....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.85
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/test_scalarprint.py
""" Test printing of scalar types.

"""
import code
import platform
import pytest
import sys

from tempfile import TemporaryFile
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises, IS_MUSL

class TestRealScalars:
    def test_str(self):
        svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan]
        styps = [np.float16, np.float32, np.float64, np.longdouble]
        wanted = [
             ['0.0',  '0.0',  '0.0',  '0.0' ],
             ['-0.0', '-0.0', '-0.0', '-0.0'],
             ['1.0',  '1.0',  '1.0',  '1.0' ],
             ['-1.0', '-1.0', '-1.0', '-1.0'],
             ['inf',  'inf',  'inf',  'inf' ],
             ['-inf', '-inf', '-inf', '-inf'],
             ['nan',  'nan',  'nan',  'nan']]

        for wants, val in zip(wanted, svals):
            for want, styp in zip(wants, styps):
                msg = 'for str({}({}))'.format(np.dtype(styp).name, repr(val))
                assert_equal(str(styp(val)), want, err_msg=msg)

    def test_scalar_cutoffs(self):
        # test that both the str and repr of np.float64 behaves
        # like python floats in python3.
        def check(v):
            assert_equal(str(np.float64(v)), str(v))
            assert_equal(str(np.float64(v)), repr(v))
            assert_equal(repr(np.float64(v)), repr(v))
            assert_equal(repr(np.float64(v)), str(v))

        # check we use the same number of significant digits
        check(1.12345678901234567890)
        check(0.0112345678901234567890)

        # check switch from scientific output to positional and back
        check(1e-5)
        check(1e-4)
        check(1e15)
        check(1e16)

    def test_py2_float_print(self):
        # gh-10753
        # In python2, the python float type implements an obsolete method
        # tp_print, which overrides tp_repr and tp_str when using "print" to
        # output to a "real file" (ie, not a StringIO). Make sure we don't
        # inherit it.
        x = np.double(0.1999999999999)
        with TemporaryFile('r+t') as f:
            print(x, file=f)
            f.seek(0)
            output = f.read()
        assert_equal(output, str(x) + '\n')
        # In python2 the value float('0.1999999999999') prints with reduced
        # precision as '0.2', but we want numpy's np.double('0.1999999999999')
        # to print the unique value, '0.1999999999999'.

        # gh-11031
        # Only in the python2 interactive shell and when stdout is a "real"
        # file, the output of the last command is printed to stdout without
        # Py_PRINT_RAW (unlike the print statement) so `>>> x` and `>>> print
        # x` are potentially different. Make sure they are the same. The only
        # way I found to get prompt-like output is using an actual prompt from
        # the 'code' module. Again, must use tempfile to get a "real" file.

        # dummy user-input which enters one line and then ctrl-Ds.
        def userinput():
            yield 'np.sqrt(2)'
            raise EOFError
        gen = userinput()
        input_func = lambda prompt="": next(gen)

        with TemporaryFile('r+t') as fo, TemporaryFile('r+t') as fe:
            orig_stdout, orig_stderr = sys.stdout, sys.stderr
            sys.stdout, sys.stderr = fo, fe

            code.interact(local={'np': np}, readfunc=input_func, banner='')

            sys.stdout, sys.stderr = orig_stdout, orig_stderr

            fo.seek(0)
            capture = fo.read().strip()

        assert_equal(capture, repr(np.sqrt(2)))

    def test_dragon4(self):
        # these tests are adapted from Ryan Juckett's dragon4 implementation,
        # see dragon4.c for details.

        fpos32 = lambda x, **k: np.format_float_positional(np.float32(x), **k)
        fsci32 = lambda x, **k: np.format_float_scientific(np.float32(x), **k)
        fpos64 = lambda x, **k: np.format_float_positional(np.float64(x), **k)
        fsci64 = lambda x, **k: np.format_float_scientific(np.float64(x), **k)

        preckwd = lambda prec: {'unique': False, 'precision': prec}

        assert_equal(fpos32('1.0'), "1.")
        assert_equal(fsci32('1.0'), "1.e+00")
        assert_equal(fpos32('10.234'), "10.234")
        assert_equal(fpos32('-10.234'), "-10.234")
        assert_equal(fsci32('10.234'), "1.0234e+01")
        assert_equal(fsci32('-10.234'), "-1.0234e+01")
        assert_equal(fpos32('1000.0'), "1000.")
        assert_equal(fpos32('1.0', precision=0), "1.")
        assert_equal(fsci32('1.0', precision=0), "1.e+00")
        assert_equal(fpos32('10.234', precision=0), "10.")
        assert_equal(fpos32('-10.234', precision=0), "-10.")
        assert_equal(fsci32('10.234', precision=0), "1.e+01")
        assert_equal(fsci32('-10.234', precision=0), "-1.e+01")
        assert_equal(fpos32('10.234', precision=2), "10.23")
        assert_equal(fsci32('-10.234', precision=2), "-1.02e+01")
        assert_equal(fsci64('9.9999999999999995e-08', **preckwd(16)),
                            '9.9999999999999995e-08')
        assert_equal(fsci64('9.8813129168249309e-324', **preckwd(16)),
                            '9.8813129168249309e-324')
        assert_equal(fsci64('9.9999999999999694e-311', **preckwd(16)),
                            '9.9999999999999694e-311')


        # test rounding
        # 3.1415927410 is closest float32 to np.pi
        assert_equal(fpos32('3.14159265358979323846', **preckwd(10)),
                            "3.1415927410")
        assert_equal(fsci32('3.14159265358979323846', **preckwd(10)),
                            "3.1415927410e+00")
        assert_equal(fpos64('3.14159265358979323846', **preckwd(10)),
                            "3.1415926536")
        assert_equal(fsci64('3.14159265358979323846', **preckwd(10)),
                            "3.1415926536e+00")
        # 299792448 is closest float32 to 299792458
        assert_equal(fpos32('299792458.0', **preckwd(5)), "299792448.00000")
        assert_equal(fsci32('299792458.0', **preckwd(5)), "2.99792e+08")
        assert_equal(fpos64('299792458.0', **preckwd(5)), "299792458.00000")
        assert_equal(fsci64('299792458.0', **preckwd(5)), "2.99792e+08")

        assert_equal(fpos32('3.14159265358979323846', **preckwd(25)),
                            "3.1415927410125732421875000")
        assert_equal(fpos64('3.14159265358979323846', **preckwd(50)),
                         "3.14159265358979311599796346854418516159057617187500")
        assert_equal(fpos64('3.14159265358979323846'), "3.141592653589793")


        # smallest numbers
        assert_equal(fpos32(0.5**(126 + 23), unique=False, precision=149),
                    "0.00000000000000000000000000000000000000000000140129846432"
                    "4817070923729583289916131280261941876515771757068283889791"
                    "08268586060148663818836212158203125")
        
        assert_equal(fpos64(5e-324, unique=False, precision=1074),
                    "0.00000000000000000000000000000000000000000000000000000000"
                    "0000000000000000000000000000000000000000000000000000000000"
                    "0000000000000000000000000000000000000000000000000000000000"
                    "0000000000000000000000000000000000000000000000000000000000"
                    "0000000000000000000000000000000000000000000000000000000000"
                    "0000000000000000000000000000000000049406564584124654417656"
                    "8792868221372365059802614324764425585682500675507270208751"
                    "8652998363616359923797965646954457177309266567103559397963"
                    "9877479601078187812630071319031140452784581716784898210368"
                    "8718636056998730723050006387409153564984387312473397273169"
                    "6151400317153853980741262385655911710266585566867681870395"
                    "6031062493194527159149245532930545654440112748012970999954"
                    "1931989409080416563324524757147869014726780159355238611550"
                    "1348035264934720193790268107107491703332226844753335720832"
                    "4319360923828934583680601060115061698097530783422773183292"
                    "4790498252473077637592724787465608477820373446969953364701"
                    "7972677717585125660551199131504891101451037862738167250955"
                    "8373897335989936648099411642057026370902792427675445652290"
                    "87538682506419718265533447265625")

        # largest numbers
        f32x = np.finfo(np.float32).max
        assert_equal(fpos32(f32x, **preckwd(0)),
                    "340282346638528859811704183484516925440.")
        assert_equal(fpos64(np.finfo(np.float64).max, **preckwd(0)),
                    "1797693134862315708145274237317043567980705675258449965989"
                    "1747680315726078002853876058955863276687817154045895351438"
                    "2464234321326889464182768467546703537516986049910576551282"
                    "0762454900903893289440758685084551339423045832369032229481"
                    "6580855933212334827479782620414472316873817718091929988125"
                    "0404026184124858368.")
        # Warning: In unique mode only the integer digits necessary for
        # uniqueness are computed, the rest are 0.
        assert_equal(fpos32(f32x),
                    "340282350000000000000000000000000000000.")

        # Further tests of zero-padding vs rounding in different combinations
        # of unique, fractional, precision, min_digits
        # precision can only reduce digits, not add them.
        # min_digits can only extend digits, not reduce them.
        assert_equal(fpos32(f32x, unique=True, fractional=True, precision=0),
                    "340282350000000000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=True, precision=4),
                    "340282350000000000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=0),
                    "340282346638528859811704183484516925440.")
        assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=4),
                    "340282346638528859811704183484516925440.0000")
        assert_equal(fpos32(f32x, unique=True, fractional=True,
                                    min_digits=4, precision=4),
                    "340282346638528859811704183484516925440.0000")
        assert_raises(ValueError, fpos32, f32x, unique=True, fractional=False,
                                          precision=0)
        assert_equal(fpos32(f32x, unique=True, fractional=False, precision=4),
                    "340300000000000000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=False, precision=20),
                    "340282350000000000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=False, min_digits=4),
                    "340282350000000000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=False,
                                  min_digits=20),
                    "340282346638528859810000000000000000000.")
        assert_equal(fpos32(f32x, unique=True, fractional=False,
                                  min_digits=15),
                    "340282346638529000000000000000000000000.")
        assert_equal(fpos32(f32x, unique=False, fractional=False, precision=4),
                    "340300000000000000000000000000000000000.")
        # test that unique rounding is preserved when precision is supplied
        # but no extra digits need to be printed (gh-18609)
        a = np.float64.fromhex('-1p-97')
        assert_equal(fsci64(a, unique=True), '-6.310887241768095e-30')
        assert_equal(fsci64(a, unique=False, precision=15),
                     '-6.310887241768094e-30')
        assert_equal(fsci64(a, unique=True, precision=15),
                     '-6.310887241768095e-30')
        assert_equal(fsci64(a, unique=True, min_digits=15),
                     '-6.310887241768095e-30')
        assert_equal(fsci64(a, unique=True, precision=15, min_digits=15),
                     '-6.310887241768095e-30')
        # adds/remove digits in unique mode with unbiased rnding
        assert_equal(fsci64(a, unique=True, precision=14),
                     '-6.31088724176809e-30')
        assert_equal(fsci64(a, unique=True, min_digits=16),
                     '-6.3108872417680944e-30')
        assert_equal(fsci64(a, unique=True, precision=16),
                     '-6.310887241768095e-30')
        assert_equal(fsci64(a, unique=True, min_digits=14),
                     '-6.310887241768095e-30')
        # test min_digits in unique mode with different rounding cases
        assert_equal(fsci64('1e120', min_digits=3), '1.000e+120')
        assert_equal(fsci64('1e100', min_digits=3), '1.000e+100')

        # test trailing zeros
        assert_equal(fpos32('1.0', unique=False, precision=3), "1.000")
        assert_equal(fpos64('1.0', unique=False, precision=3), "1.000")
        assert_equal(fsci32('1.0', unique=False, precision=3), "1.000e+00")
        assert_equal(fsci64('1.0', unique=False, precision=3), "1.000e+00")
        assert_equal(fpos32('1.5', unique=False, precision=3), "1.500")
        assert_equal(fpos64('1.5', unique=False, precision=3), "1.500")
        assert_equal(fsci32('1.5', unique=False, precision=3), "1.500e+00")
        assert_equal(fsci64('1.5', unique=False, precision=3), "1.500e+00")
        # gh-10713
        assert_equal(fpos64('324', unique=False, precision=5,
                                   fractional=False), "324.00")

    def test_dragon4_interface(self):
        tps = [np.float16, np.float32, np.float64]
        # test is flaky for musllinux on np.float128
        if hasattr(np, 'float128') and not IS_MUSL:
            tps.append(np.float128)

        fpos = np.format_float_positional
        fsci = np.format_float_scientific

        for tp in tps:
            # test padding
            assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), "   1.    ")
            assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), "  -1.    ")
            assert_equal(fpos(tp('-10.2'),
                         pad_left=4, pad_right=4), " -10.2   ")

            # test exp_digits
            assert_equal(fsci(tp('1.23e1'), exp_digits=5), "1.23e+00001")

            # test fixed (non-unique) mode
            assert_equal(fpos(tp('1.0'), unique=False, precision=4), "1.0000")
            assert_equal(fsci(tp('1.0'), unique=False, precision=4),
                         "1.0000e+00")

            # test trimming
            # trim of 'k' or '.' only affects non-unique mode, since unique
            # mode will not output trailing 0s.
            assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='k'),
                         "1.0000")

            assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='.'),
                         "1.")
            assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='.'),
                         "1.2" if tp != np.float16 else "1.2002")

            assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='0'),
                         "1.0")
            assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='0'),
                         "1.2" if tp != np.float16 else "1.2002")
            assert_equal(fpos(tp('1.'), trim='0'), "1.0")

            assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='-'),
                         "1")
            assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='-'),
                         "1.2" if tp != np.float16 else "1.2002")
            assert_equal(fpos(tp('1.'), trim='-'), "1")
            assert_equal(fpos(tp('1.001'), precision=1, trim='-'), "1")

    @pytest.mark.skipif(not platform.machine().startswith("ppc64"),
                        reason="only applies to ppc float128 values")
    def test_ppc64_ibm_double_double128(self):
        # check that the precision decreases once we get into the subnormal
        # range. Unlike float64, this starts around 1e-292 instead of 1e-308,
        # which happens when the first double is normal and the second is
        # subnormal.
        x = np.float128('2.123123123123123123123123123123123e-286')
        got = [str(x/np.float128('2e' + str(i))) for i in range(0,40)]
        expected = [
            "1.06156156156156156156156156156157e-286",
            "1.06156156156156156156156156156158e-287",
            "1.06156156156156156156156156156159e-288",
            "1.0615615615615615615615615615616e-289",
            "1.06156156156156156156156156156157e-290",
            "1.06156156156156156156156156156156e-291",
            "1.0615615615615615615615615615616e-292",
            "1.0615615615615615615615615615615e-293",
            "1.061561561561561561561561561562e-294",
            "1.06156156156156156156156156155e-295",
            "1.0615615615615615615615615616e-296",
            "1.06156156156156156156156156e-297",
            "1.06156156156156156156156157e-298",
            "1.0615615615615615615615616e-299",
            "1.06156156156156156156156e-300",
            "1.06156156156156156156155e-301",
            "1.0615615615615615615616e-302",
            "1.061561561561561561562e-303",
            "1.06156156156156156156e-304",
            "1.0615615615615615618e-305",
            "1.06156156156156156e-306",
            "1.06156156156156157e-307",
            "1.0615615615615616e-308",
            "1.06156156156156e-309",
            "1.06156156156157e-310",
            "1.0615615615616e-311",
            "1.06156156156e-312",
            "1.06156156154e-313",
            "1.0615615616e-314",
            "1.06156156e-315",
            "1.06156155e-316",
            "1.061562e-317",
            "1.06156e-318",
            "1.06155e-319",
            "1.0617e-320",
            "1.06e-321",
            "1.04e-322",
            "1e-323",
            "0.0",
            "0.0"]
        assert_equal(got, expected)

        # Note: we follow glibc behavior, but it (or gcc) might not be right.
        # In particular we can get two values that print the same but are not
        # equal:
        a = np.float128('2')/np.float128('3')
        b = np.float128(str(a))
        assert_equal(str(a), str(b))
        assert_(a != b)

    def float32_roundtrip(self):
        # gh-9360
        x = np.float32(1024 - 2**-14)
        y = np.float32(1024 - 2**-13)
        assert_(repr(x) != repr(y))
        assert_equal(np.float32(repr(x)), x)
        assert_equal(np.float32(repr(y)), y)

    def float64_vs_python(self):
        # gh-2643, gh-6136, gh-6908
        assert_equal(repr(np.float64(0.1)), repr(0.1))
        assert_(repr(np.float64(0.20000000000000004)) != repr(0.2))

Youez - 2016 - github.com/yon3zu
LinuXploit