....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.85
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/test_umath_complex.py
import sys
import platform
import pytest

import numpy as np
# import the c-extension module directly since _arg is not exported via umath
import numpy.core._multiarray_umath as ncu
from numpy.testing import (
    assert_raises, assert_equal, assert_array_equal, assert_almost_equal, assert_array_max_ulp
    )

# TODO: branch cuts (use Pauli code)
# TODO: conj 'symmetry'
# TODO: FPU exceptions

# At least on Windows the results of many complex functions are not conforming
# to the C99 standard. See ticket 1574.
# Ditto for Solaris (ticket 1642) and OS X on PowerPC.
#FIXME: this will probably change when we require full C99 campatibility
with np.errstate(all='ignore'):
    functions_seem_flaky = ((np.exp(complex(np.inf, 0)).imag != 0)
                            or (np.log(complex(np.NZERO, 0)).imag != np.pi))
# TODO: replace with a check on whether platform-provided C99 funcs are used
xfail_complex_tests = (not sys.platform.startswith('linux') or functions_seem_flaky)

# TODO This can be xfail when the generator functions are got rid of.
platform_skip = pytest.mark.skipif(xfail_complex_tests,
                                   reason="Inadequate C99 complex support")



class TestCexp:
    def test_simple(self):
        check = check_complex_value
        f = np.exp

        check(f, 1, 0, np.exp(1), 0, False)
        check(f, 0, 1, np.cos(1), np.sin(1), False)

        ref = np.exp(1) * complex(np.cos(1), np.sin(1))
        check(f, 1, 1, ref.real, ref.imag, False)

    @platform_skip
    def test_special_values(self):
        # C99: Section G 6.3.1

        check = check_complex_value
        f = np.exp

        # cexp(+-0 + 0i) is 1 + 0i
        check(f, np.PZERO, 0, 1, 0, False)
        check(f, np.NZERO, 0, 1, 0, False)

        # cexp(x + infi) is nan + nani for finite x and raises 'invalid' FPU
        # exception
        check(f,  1, np.inf, np.nan, np.nan)
        check(f, -1, np.inf, np.nan, np.nan)
        check(f,  0, np.inf, np.nan, np.nan)

        # cexp(inf + 0i) is inf + 0i
        check(f,  np.inf, 0, np.inf, 0)

        # cexp(-inf + yi) is +0 * (cos(y) + i sin(y)) for finite y
        check(f,  -np.inf, 1, np.PZERO, np.PZERO)
        check(f,  -np.inf, 0.75 * np.pi, np.NZERO, np.PZERO)

        # cexp(inf + yi) is +inf * (cos(y) + i sin(y)) for finite y
        check(f,  np.inf, 1, np.inf, np.inf)
        check(f,  np.inf, 0.75 * np.pi, -np.inf, np.inf)

        # cexp(-inf + inf i) is +-0 +- 0i (signs unspecified)
        def _check_ninf_inf(dummy):
            msgform = "cexp(-inf, inf) is (%f, %f), expected (+-0, +-0)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(-np.inf, np.inf)))
                if z.real != 0 or z.imag != 0:
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_inf(None)

        # cexp(inf + inf i) is +-inf + NaNi and raised invalid FPU ex.
        def _check_inf_inf(dummy):
            msgform = "cexp(inf, inf) is (%f, %f), expected (+-inf, nan)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(np.inf, np.inf)))
                if not np.isinf(z.real) or not np.isnan(z.imag):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_inf_inf(None)

        # cexp(-inf + nan i) is +-0 +- 0i
        def _check_ninf_nan(dummy):
            msgform = "cexp(-inf, nan) is (%f, %f), expected (+-0, +-0)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(-np.inf, np.nan)))
                if z.real != 0 or z.imag != 0:
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_nan(None)

        # cexp(inf + nan i) is +-inf + nan
        def _check_inf_nan(dummy):
            msgform = "cexp(-inf, nan) is (%f, %f), expected (+-inf, nan)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(np.inf, np.nan)))
                if not np.isinf(z.real) or not np.isnan(z.imag):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_inf_nan(None)

        # cexp(nan + yi) is nan + nani for y != 0 (optional: raises invalid FPU
        # ex)
        check(f, np.nan, 1, np.nan, np.nan)
        check(f, np.nan, -1, np.nan, np.nan)

        check(f, np.nan,  np.inf, np.nan, np.nan)
        check(f, np.nan, -np.inf, np.nan, np.nan)

        # cexp(nan + nani) is nan + nani
        check(f, np.nan, np.nan, np.nan, np.nan)

    # TODO This can be xfail when the generator functions are got rid of.
    @pytest.mark.skip(reason="cexp(nan + 0I) is wrong on most platforms")
    def test_special_values2(self):
        # XXX: most implementations get it wrong here (including glibc <= 2.10)
        # cexp(nan + 0i) is nan + 0i
        check = check_complex_value
        f = np.exp

        check(f, np.nan, 0, np.nan, 0)

class TestClog:
    def test_simple(self):
        x = np.array([1+0j, 1+2j])
        y_r = np.log(np.abs(x)) + 1j * np.angle(x)
        y = np.log(x)
        assert_almost_equal(y, y_r)

    @platform_skip
    @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.")
    def test_special_values(self):
        xl = []
        yl = []

        # From C99 std (Sec 6.3.2)
        # XXX: check exceptions raised
        # --- raise for invalid fails.

        # clog(-0 + i0) returns -inf + i pi and raises the 'divide-by-zero'
        # floating-point exception.
        with np.errstate(divide='raise'):
            x = np.array([np.NZERO], dtype=complex)
            y = complex(-np.inf, np.pi)
            assert_raises(FloatingPointError, np.log, x)
        with np.errstate(divide='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(+0 + i0) returns -inf + i0 and raises the 'divide-by-zero'
        # floating-point exception.
        with np.errstate(divide='raise'):
            x = np.array([0], dtype=complex)
            y = complex(-np.inf, 0)
            assert_raises(FloatingPointError, np.log, x)
        with np.errstate(divide='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(x + i inf returns +inf + i pi /2, for finite x.
        x = np.array([complex(1, np.inf)], dtype=complex)
        y = complex(np.inf, 0.5 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        x = np.array([complex(-1, np.inf)], dtype=complex)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(x + iNaN) returns NaN + iNaN and optionally raises the
        # 'invalid' floating- point exception, for finite x.
        with np.errstate(invalid='raise'):
            x = np.array([complex(1., np.nan)], dtype=complex)
            y = complex(np.nan, np.nan)
            #assert_raises(FloatingPointError, np.log, x)
        with np.errstate(invalid='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        with np.errstate(invalid='raise'):
            x = np.array([np.inf + 1j * np.nan], dtype=complex)
            #assert_raises(FloatingPointError, np.log, x)
        with np.errstate(invalid='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(- inf + iy) returns +inf + ipi , for finite positive-signed y.
        x = np.array([-np.inf + 1j], dtype=complex)
        y = complex(np.inf, np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+ inf + iy) returns +inf + i0, for finite positive-signed y.
        x = np.array([np.inf + 1j], dtype=complex)
        y = complex(np.inf, 0)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(- inf + i inf) returns +inf + i3pi /4.
        x = np.array([complex(-np.inf, np.inf)], dtype=complex)
        y = complex(np.inf, 0.75 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+ inf + i inf) returns +inf + ipi /4.
        x = np.array([complex(np.inf, np.inf)], dtype=complex)
        y = complex(np.inf, 0.25 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+/- inf + iNaN) returns +inf + iNaN.
        x = np.array([complex(np.inf, np.nan)], dtype=complex)
        y = complex(np.inf, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        x = np.array([complex(-np.inf, np.nan)], dtype=complex)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + iy) returns NaN + iNaN and optionally raises the
        # 'invalid' floating-point exception, for finite y.
        x = np.array([complex(np.nan, 1)], dtype=complex)
        y = complex(np.nan, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + i inf) returns +inf + iNaN.
        x = np.array([complex(np.nan, np.inf)], dtype=complex)
        y = complex(np.inf, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + iNaN) returns NaN + iNaN.
        x = np.array([complex(np.nan, np.nan)], dtype=complex)
        y = complex(np.nan, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(conj(z)) = conj(clog(z)).
        xa = np.array(xl, dtype=complex)
        ya = np.array(yl, dtype=complex)
        with np.errstate(divide='ignore'):
            for i in range(len(xa)):
                assert_almost_equal(np.log(xa[i].conj()), ya[i].conj())


class TestCsqrt:

    def test_simple(self):
        # sqrt(1)
        check_complex_value(np.sqrt, 1, 0, 1, 0)

        # sqrt(1i)
        rres = 0.5*np.sqrt(2)
        ires = rres
        check_complex_value(np.sqrt, 0, 1, rres, ires, False)

        # sqrt(-1)
        check_complex_value(np.sqrt, -1, 0, 0, 1)

    def test_simple_conjugate(self):
        ref = np.conj(np.sqrt(complex(1, 1)))

        def f(z):
            return np.sqrt(np.conj(z))

        check_complex_value(f, 1, 1, ref.real, ref.imag, False)

    #def test_branch_cut(self):
    #    _check_branch_cut(f, -1, 0, 1, -1)

    @platform_skip
    def test_special_values(self):
        # C99: Sec G 6.4.2

        check = check_complex_value
        f = np.sqrt

        # csqrt(+-0 + 0i) is 0 + 0i
        check(f, np.PZERO, 0, 0, 0)
        check(f, np.NZERO, 0, 0, 0)

        # csqrt(x + infi) is inf + infi for any x (including NaN)
        check(f,  1, np.inf, np.inf, np.inf)
        check(f, -1, np.inf, np.inf, np.inf)

        check(f, np.PZERO, np.inf, np.inf, np.inf)
        check(f, np.NZERO, np.inf, np.inf, np.inf)
        check(f,   np.inf, np.inf, np.inf, np.inf)
        check(f,  -np.inf, np.inf, np.inf, np.inf)
        check(f,  -np.nan, np.inf, np.inf, np.inf)

        # csqrt(x + nani) is nan + nani for any finite x
        check(f,  1, np.nan, np.nan, np.nan)
        check(f, -1, np.nan, np.nan, np.nan)
        check(f,  0, np.nan, np.nan, np.nan)

        # csqrt(-inf + yi) is +0 + infi for any finite y > 0
        check(f, -np.inf, 1, np.PZERO, np.inf)

        # csqrt(inf + yi) is +inf + 0i for any finite y > 0
        check(f, np.inf, 1, np.inf, np.PZERO)

        # csqrt(-inf + nani) is nan +- infi (both +i infi are valid)
        def _check_ninf_nan(dummy):
            msgform = "csqrt(-inf, nan) is (%f, %f), expected (nan, +-inf)"
            z = np.sqrt(np.array(complex(-np.inf, np.nan)))
            #Fixme: ugly workaround for isinf bug.
            with np.errstate(invalid='ignore'):
                if not (np.isnan(z.real) and np.isinf(z.imag)):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_nan(None)

        # csqrt(+inf + nani) is inf + nani
        check(f, np.inf, np.nan, np.inf, np.nan)

        # csqrt(nan + yi) is nan + nani for any finite y (infinite handled in x
        # + nani)
        check(f, np.nan,       0, np.nan, np.nan)
        check(f, np.nan,       1, np.nan, np.nan)
        check(f, np.nan,  np.nan, np.nan, np.nan)

        # XXX: check for conj(csqrt(z)) == csqrt(conj(z)) (need to fix branch
        # cuts first)

class TestCpow:
    def setup_method(self):
        self.olderr = np.seterr(invalid='ignore')

    def teardown_method(self):
        np.seterr(**self.olderr)

    def test_simple(self):
        x = np.array([1+1j, 0+2j, 1+2j, np.inf, np.nan])
        y_r = x ** 2
        y = np.power(x, 2)
        assert_almost_equal(y, y_r)

    def test_scalar(self):
        x = np.array([1, 1j,         2,  2.5+.37j, np.inf, np.nan])
        y = np.array([1, 1j, -0.5+1.5j, -0.5+1.5j,      2,      3])
        lx = list(range(len(x)))

        # Hardcode the expected `builtins.complex` values,
        # as complex exponentiation is broken as of bpo-44698
        p_r = [
            1+0j,
            0.20787957635076193+0j,
            0.35812203996480685+0.6097119028618724j,
            0.12659112128185032+0.48847676699581527j,
            complex(np.inf, np.nan),
            complex(np.nan, np.nan),
        ]

        n_r = [x[i] ** y[i] for i in lx]
        for i in lx:
            assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)

    def test_array(self):
        x = np.array([1, 1j,         2,  2.5+.37j, np.inf, np.nan])
        y = np.array([1, 1j, -0.5+1.5j, -0.5+1.5j,      2,      3])
        lx = list(range(len(x)))

        # Hardcode the expected `builtins.complex` values,
        # as complex exponentiation is broken as of bpo-44698
        p_r = [
            1+0j,
            0.20787957635076193+0j,
            0.35812203996480685+0.6097119028618724j,
            0.12659112128185032+0.48847676699581527j,
            complex(np.inf, np.nan),
            complex(np.nan, np.nan),
        ]

        n_r = x ** y
        for i in lx:
            assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)

class TestCabs:
    def setup_method(self):
        self.olderr = np.seterr(invalid='ignore')

    def teardown_method(self):
        np.seterr(**self.olderr)

    def test_simple(self):
        x = np.array([1+1j, 0+2j, 1+2j, np.inf, np.nan])
        y_r = np.array([np.sqrt(2.), 2, np.sqrt(5), np.inf, np.nan])
        y = np.abs(x)
        assert_almost_equal(y, y_r)

    def test_fabs(self):
        # Test that np.abs(x +- 0j) == np.abs(x) (as mandated by C99 for cabs)
        x = np.array([1+0j], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(1, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(np.inf, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(np.nan, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

    def test_cabs_inf_nan(self):
        x, y = [], []

        # cabs(+-nan + nani) returns nan
        x.append(np.nan)
        y.append(np.nan)
        check_real_value(np.abs,  np.nan, np.nan, np.nan)

        x.append(np.nan)
        y.append(-np.nan)
        check_real_value(np.abs, -np.nan, np.nan, np.nan)

        # According to C99 standard, if exactly one of the real/part is inf and
        # the other nan, then cabs should return inf
        x.append(np.inf)
        y.append(np.nan)
        check_real_value(np.abs,  np.inf, np.nan, np.inf)

        x.append(-np.inf)
        y.append(np.nan)
        check_real_value(np.abs, -np.inf, np.nan, np.inf)

        # cabs(conj(z)) == conj(cabs(z)) (= cabs(z))
        def f(a):
            return np.abs(np.conj(a))

        def g(a, b):
            return np.abs(complex(a, b))

        xa = np.array(x, dtype=complex)
        assert len(xa) == len(x) == len(y)
        for xi, yi in zip(x, y):
            ref = g(xi, yi)
            check_real_value(f, xi, yi, ref)

class TestCarg:
    def test_simple(self):
        check_real_value(ncu._arg, 1, 0, 0, False)
        check_real_value(ncu._arg, 0, 1, 0.5*np.pi, False)

        check_real_value(ncu._arg, 1, 1, 0.25*np.pi, False)
        check_real_value(ncu._arg, np.PZERO, np.PZERO, np.PZERO)

    # TODO This can be xfail when the generator functions are got rid of.
    @pytest.mark.skip(
        reason="Complex arithmetic with signed zero fails on most platforms")
    def test_zero(self):
        # carg(-0 +- 0i) returns +- pi
        check_real_value(ncu._arg, np.NZERO, np.PZERO,  np.pi, False)
        check_real_value(ncu._arg, np.NZERO, np.NZERO, -np.pi, False)

        # carg(+0 +- 0i) returns +- 0
        check_real_value(ncu._arg, np.PZERO, np.PZERO, np.PZERO)
        check_real_value(ncu._arg, np.PZERO, np.NZERO, np.NZERO)

        # carg(x +- 0i) returns +- 0 for x > 0
        check_real_value(ncu._arg, 1, np.PZERO, np.PZERO, False)
        check_real_value(ncu._arg, 1, np.NZERO, np.NZERO, False)

        # carg(x +- 0i) returns +- pi for x < 0
        check_real_value(ncu._arg, -1, np.PZERO,  np.pi, False)
        check_real_value(ncu._arg, -1, np.NZERO, -np.pi, False)

        # carg(+- 0 + yi) returns pi/2 for y > 0
        check_real_value(ncu._arg, np.PZERO, 1, 0.5 * np.pi, False)
        check_real_value(ncu._arg, np.NZERO, 1, 0.5 * np.pi, False)

        # carg(+- 0 + yi) returns -pi/2 for y < 0
        check_real_value(ncu._arg, np.PZERO, -1, 0.5 * np.pi, False)
        check_real_value(ncu._arg, np.NZERO, -1, -0.5 * np.pi, False)

    #def test_branch_cuts(self):
    #    _check_branch_cut(ncu._arg, -1, 1j, -1, 1)

    def test_special_values(self):
        # carg(-np.inf +- yi) returns +-pi for finite y > 0
        check_real_value(ncu._arg, -np.inf,  1,  np.pi, False)
        check_real_value(ncu._arg, -np.inf, -1, -np.pi, False)

        # carg(np.inf +- yi) returns +-0 for finite y > 0
        check_real_value(ncu._arg, np.inf,  1, np.PZERO, False)
        check_real_value(ncu._arg, np.inf, -1, np.NZERO, False)

        # carg(x +- np.infi) returns +-pi/2 for finite x
        check_real_value(ncu._arg, 1,  np.inf,  0.5 * np.pi, False)
        check_real_value(ncu._arg, 1, -np.inf, -0.5 * np.pi, False)

        # carg(-np.inf +- np.infi) returns +-3pi/4
        check_real_value(ncu._arg, -np.inf,  np.inf,  0.75 * np.pi, False)
        check_real_value(ncu._arg, -np.inf, -np.inf, -0.75 * np.pi, False)

        # carg(np.inf +- np.infi) returns +-pi/4
        check_real_value(ncu._arg, np.inf,  np.inf,  0.25 * np.pi, False)
        check_real_value(ncu._arg, np.inf, -np.inf, -0.25 * np.pi, False)

        # carg(x + yi) returns np.nan if x or y is nan
        check_real_value(ncu._arg, np.nan,      0, np.nan, False)
        check_real_value(ncu._arg,      0, np.nan, np.nan, False)

        check_real_value(ncu._arg, np.nan, np.inf, np.nan, False)
        check_real_value(ncu._arg, np.inf, np.nan, np.nan, False)


def check_real_value(f, x1, y1, x, exact=True):
    z1 = np.array([complex(x1, y1)])
    if exact:
        assert_equal(f(z1), x)
    else:
        assert_almost_equal(f(z1), x)


def check_complex_value(f, x1, y1, x2, y2, exact=True):
    z1 = np.array([complex(x1, y1)])
    z2 = complex(x2, y2)
    with np.errstate(invalid='ignore'):
        if exact:
            assert_equal(f(z1), z2)
        else:
            assert_almost_equal(f(z1), z2)

class TestSpecialComplexAVX:
    @pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    def test_array(self, stride, astype):
        arr = np.array([complex(np.nan , np.nan),
                        complex(np.nan , np.inf),
                        complex(np.inf , np.nan),
                        complex(np.inf , np.inf),
                        complex(0.     , np.inf),
                        complex(np.inf , 0.),
                        complex(0.     , 0.),
                        complex(0.     , np.nan),
                        complex(np.nan , 0.)], dtype=astype)
        abs_true = np.array([np.nan, np.inf, np.inf, np.inf, np.inf, np.inf, 0., np.nan, np.nan], dtype=arr.real.dtype)
        sq_true = np.array([complex(np.nan,  np.nan),
                            complex(np.nan,  np.nan),
                            complex(np.nan,  np.nan),
                            complex(np.nan,  np.inf),
                            complex(-np.inf, np.nan),
                            complex(np.inf,  np.nan),
                            complex(0.,     0.),
                            complex(np.nan, np.nan),
                            complex(np.nan, np.nan)], dtype=astype)
        assert_equal(np.abs(arr[::stride]), abs_true[::stride])
        with np.errstate(invalid='ignore'):
            assert_equal(np.square(arr[::stride]), sq_true[::stride])

class TestComplexAbsoluteAVX:
    @pytest.mark.parametrize("arraysize", [1,2,3,4,5,6,7,8,9,10,11,13,15,17,18,19])
    @pytest.mark.parametrize("stride", [-4,-3,-2,-1,1,2,3,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    # test to ensure masking and strides work as intended in the AVX implementation
    def test_array(self, arraysize, stride, astype):
        arr = np.ones(arraysize, dtype=astype)
        abs_true = np.ones(arraysize, dtype=arr.real.dtype)
        assert_equal(np.abs(arr[::stride]), abs_true[::stride])

# Testcase taken as is from https://github.com/numpy/numpy/issues/16660
class TestComplexAbsoluteMixedDTypes:
    @pytest.mark.parametrize("stride", [-4,-3,-2,-1,1,2,3,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    @pytest.mark.parametrize("func", ['abs', 'square', 'conjugate'])

    def test_array(self, stride, astype, func):
        dtype = [('template_id', '<i8'), ('bank_chisq','<f4'),
                 ('bank_chisq_dof','<i8'), ('chisq', '<f4'), ('chisq_dof','<i8'),
                 ('cont_chisq', '<f4'), ('psd_var_val', '<f4'), ('sg_chisq','<f4'),
                 ('mycomplex', astype), ('time_index', '<i8')]
        vec = np.array([
               (0, 0., 0, -31.666483, 200, 0., 0.,  1.      ,  3.0+4.0j   ,  613090),
               (1, 0., 0, 260.91525 ,  42, 0., 0.,  1.      ,  5.0+12.0j  ,  787315),
               (1, 0., 0,  52.15155 ,  42, 0., 0.,  1.      ,  8.0+15.0j  ,  806641),
               (1, 0., 0,  52.430195,  42, 0., 0.,  1.      ,  7.0+24.0j  , 1363540),
               (2, 0., 0, 304.43646 ,  58, 0., 0.,  1.      ,  20.0+21.0j ,  787323),
               (3, 0., 0, 299.42108 ,  52, 0., 0.,  1.      ,  12.0+35.0j ,  787332),
               (4, 0., 0,  39.4836  ,  28, 0., 0.,  9.182192,  9.0+40.0j  ,  787304),
               (4, 0., 0,  76.83787 ,  28, 0., 0.,  1.      ,  28.0+45.0j, 1321869),
               (5, 0., 0, 143.26366 ,  24, 0., 0., 10.996129,  11.0+60.0j ,  787299)], dtype=dtype)
        myfunc = getattr(np, func)
        a = vec['mycomplex']
        g = myfunc(a[::stride])

        b = vec['mycomplex'].copy()
        h = myfunc(b[::stride])

        assert_array_max_ulp(h.real, g.real, 1)
        assert_array_max_ulp(h.imag, g.imag, 1)

Youez - 2016 - github.com/yon3zu
LinuXploit