....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.153
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/fft/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/fft/tests/test_helper.py
"""Test functions for fftpack.helper module

Copied from fftpack.helper by Pearu Peterson, October 2005

"""
import numpy as np
from numpy.testing import assert_array_almost_equal
from numpy import fft, pi


class TestFFTShift:

    def test_definition(self):
        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
        y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
        assert_array_almost_equal(fft.fftshift(x), y)
        assert_array_almost_equal(fft.ifftshift(y), x)
        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
        y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
        assert_array_almost_equal(fft.fftshift(x), y)
        assert_array_almost_equal(fft.ifftshift(y), x)

    def test_inverse(self):
        for n in [1, 4, 9, 100, 211]:
            x = np.random.random((n,))
            assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)

    def test_axes_keyword(self):
        freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
        shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
                                  fft.fftshift(freqs, axes=(0,)))
        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
                                  fft.ifftshift(shifted, axes=(0,)))

        assert_array_almost_equal(fft.fftshift(freqs), shifted)
        assert_array_almost_equal(fft.ifftshift(shifted), freqs)

    def test_uneven_dims(self):
        """ Test 2D input, which has uneven dimension sizes """
        freqs = [
            [0, 1],
            [2, 3],
            [4, 5]
        ]

        # shift in dimension 0
        shift_dim0 = [
            [4, 5],
            [0, 1],
            [2, 3]
        ]
        assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)

        # shift in dimension 1
        shift_dim1 = [
            [1, 0],
            [3, 2],
            [5, 4]
        ]
        assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
        assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)

        # shift in both dimensions
        shift_dim_both = [
            [5, 4],
            [1, 0],
            [3, 2]
        ]
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
        assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)

        # axes=None (default) shift in all dimensions
        assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
        assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
        assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)

    def test_equal_to_original(self):
        """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
        from numpy.core import asarray, concatenate, arange, take

        def original_fftshift(x, axes=None):
            """ How fftshift was implemented in v1.14"""
            tmp = asarray(x)
            ndim = tmp.ndim
            if axes is None:
                axes = list(range(ndim))
            elif isinstance(axes, int):
                axes = (axes,)
            y = tmp
            for k in axes:
                n = tmp.shape[k]
                p2 = (n + 1) // 2
                mylist = concatenate((arange(p2, n), arange(p2)))
                y = take(y, mylist, k)
            return y

        def original_ifftshift(x, axes=None):
            """ How ifftshift was implemented in v1.14 """
            tmp = asarray(x)
            ndim = tmp.ndim
            if axes is None:
                axes = list(range(ndim))
            elif isinstance(axes, int):
                axes = (axes,)
            y = tmp
            for k in axes:
                n = tmp.shape[k]
                p2 = n - (n + 1) // 2
                mylist = concatenate((arange(p2, n), arange(p2)))
                y = take(y, mylist, k)
            return y

        # create possible 2d array combinations and try all possible keywords
        # compare output to original functions
        for i in range(16):
            for j in range(16):
                for axes_keyword in [0, 1, None, (0,), (0, 1)]:
                    inp = np.random.rand(i, j)

                    assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
                                              original_fftshift(inp, axes_keyword))

                    assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
                                              original_ifftshift(inp, axes_keyword))


class TestFFTFreq:

    def test_definition(self):
        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
        assert_array_almost_equal(9*fft.fftfreq(9), x)
        assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
        assert_array_almost_equal(10*fft.fftfreq(10), x)
        assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)


class TestRFFTFreq:

    def test_definition(self):
        x = [0, 1, 2, 3, 4]
        assert_array_almost_equal(9*fft.rfftfreq(9), x)
        assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
        x = [0, 1, 2, 3, 4, 5]
        assert_array_almost_equal(10*fft.rfftfreq(10), x)
        assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)


class TestIRFFTN:

    def test_not_last_axis_success(self):
        ar, ai = np.random.random((2, 16, 8, 32))
        a = ar + 1j*ai

        axes = (-2,)

        # Should not raise error
        fft.irfftn(a, axes=axes)

Youez - 2016 - github.com/yon3zu
LinuXploit