....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.178
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/matrixlib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
import numpy as np
from numpy.testing import assert_warns
from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
                                assert_array_equal)
from numpy.ma.core import (masked_array, masked_values, masked, allequal,
                           MaskType, getmask, MaskedArray, nomask,
                           log, add, hypot, divide)
from numpy.ma.extras import mr_
from numpy.compat import pickle


class MMatrix(MaskedArray, np.matrix,):

    def __new__(cls, data, mask=nomask):
        mat = np.matrix(data)
        _data = MaskedArray.__new__(cls, data=mat, mask=mask)
        return _data

    def __array_finalize__(self, obj):
        np.matrix.__array_finalize__(self, obj)
        MaskedArray.__array_finalize__(self, obj)
        return

    @property
    def _series(self):
        _view = self.view(MaskedArray)
        _view._sharedmask = False
        return _view


class TestMaskedMatrix:
    def test_matrix_indexing(self):
        # Tests conversions and indexing
        x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
        x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
        x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
        x4 = masked_array(x1)
        # test conversion to strings
        str(x2)  # raises?
        repr(x2)  # raises?
        # tests of indexing
        assert_(type(x2[1, 0]) is type(x1[1, 0]))
        assert_(x1[1, 0] == x2[1, 0])
        assert_(x2[1, 1] is masked)
        assert_equal(x1[0, 2], x2[0, 2])
        assert_equal(x1[0, 1:], x2[0, 1:])
        assert_equal(x1[:, 2], x2[:, 2])
        assert_equal(x1[:], x2[:])
        assert_equal(x1[1:], x3[1:])
        x1[0, 2] = 9
        x2[0, 2] = 9
        assert_equal(x1, x2)
        x1[0, 1:] = 99
        x2[0, 1:] = 99
        assert_equal(x1, x2)
        x2[0, 1] = masked
        assert_equal(x1, x2)
        x2[0, 1:] = masked
        assert_equal(x1, x2)
        x2[0, :] = x1[0, :]
        x2[0, 1] = masked
        assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
        x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
        assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
        assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
        x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
        assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
        assert_(allequal(x4[1], masked_array([1, 2, 3])))
        x1 = np.matrix(np.arange(5) * 1.0)
        x2 = masked_values(x1, 3.0)
        assert_equal(x1, x2)
        assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
                         x2.mask))
        assert_equal(3.0, x2.fill_value)

    def test_pickling_subbaseclass(self):
        # Test pickling w/ a subclass of ndarray
        a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
            a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
            assert_equal(a_pickled._mask, a._mask)
            assert_equal(a_pickled, a)
            assert_(isinstance(a_pickled._data, np.matrix))

    def test_count_mean_with_matrix(self):
        m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))

        assert_equal(m.count(axis=0).shape, (1, 2))
        assert_equal(m.count(axis=1).shape, (2, 1))

        # Make sure broadcasting inside mean and var work
        assert_equal(m.mean(axis=0), [[2., 3.]])
        assert_equal(m.mean(axis=1), [[1.5], [3.5]])

    def test_flat(self):
        # Test that flat can return items even for matrices [#4585, #4615]
        # test simple access
        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
        assert_equal(test.flat[1], 2)
        assert_equal(test.flat[2], masked)
        assert_(np.all(test.flat[0:2] == test[0, 0:2]))
        # Test flat on masked_matrices
        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
        test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
        control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
        assert_equal(test, control)
        # Test setting
        test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
        testflat = test.flat
        testflat[:] = testflat[[2, 1, 0]]
        assert_equal(test, control)
        testflat[0] = 9
        # test that matrices keep the correct shape (#4615)
        a = masked_array(np.matrix(np.eye(2)), mask=0)
        b = a.flat
        b01 = b[:2]
        assert_equal(b01.data, np.array([[1., 0.]]))
        assert_equal(b01.mask, np.array([[False, False]]))

    def test_allany_onmatrices(self):
        x = np.array([[0.13, 0.26, 0.90],
                      [0.28, 0.33, 0.63],
                      [0.31, 0.87, 0.70]])
        X = np.matrix(x)
        m = np.array([[True, False, False],
                      [False, False, False],
                      [True, True, False]], dtype=np.bool_)
        mX = masked_array(X, mask=m)
        mXbig = (mX > 0.5)
        mXsmall = (mX < 0.5)

        assert_(not mXbig.all())
        assert_(mXbig.any())
        assert_equal(mXbig.all(0), np.matrix([False, False, True]))
        assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
        assert_equal(mXbig.any(0), np.matrix([False, False, True]))
        assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)

        assert_(not mXsmall.all())
        assert_(mXsmall.any())
        assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
        assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
        assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)

    def test_compressed(self):
        a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
        b = a.compressed()
        assert_equal(b, a)
        assert_(isinstance(b, np.matrix))
        a[0, 0] = masked
        b = a.compressed()
        assert_equal(b, [[2, 3, 4]])

    def test_ravel(self):
        a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
        aravel = a.ravel()
        assert_equal(aravel.shape, (1, 5))
        assert_equal(aravel._mask.shape, a.shape)

    def test_view(self):
        # Test view w/ flexible dtype
        iterator = list(zip(np.arange(10), np.random.rand(10)))
        data = np.array(iterator)
        a = masked_array(iterator, dtype=[('a', float), ('b', float)])
        a.mask[0] = (1, 0)
        test = a.view((float, 2), np.matrix)
        assert_equal(test, data)
        assert_(isinstance(test, np.matrix))
        assert_(not isinstance(test, MaskedArray))


class TestSubclassing:
    # Test suite for masked subclasses of ndarray.

    def setup_method(self):
        x = np.arange(5, dtype='float')
        mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
        self.data = (x, mx)

    def test_maskedarray_subclassing(self):
        # Tests subclassing MaskedArray
        (x, mx) = self.data
        assert_(isinstance(mx._data, np.matrix))

    def test_masked_unary_operations(self):
        # Tests masked_unary_operation
        (x, mx) = self.data
        with np.errstate(divide='ignore'):
            assert_(isinstance(log(mx), MMatrix))
            assert_equal(log(x), np.log(x))

    def test_masked_binary_operations(self):
        # Tests masked_binary_operation
        (x, mx) = self.data
        # Result should be a MMatrix
        assert_(isinstance(add(mx, mx), MMatrix))
        assert_(isinstance(add(mx, x), MMatrix))
        # Result should work
        assert_equal(add(mx, x), mx+x)
        assert_(isinstance(add(mx, mx)._data, np.matrix))
        with assert_warns(DeprecationWarning):
            assert_(isinstance(add.outer(mx, mx), MMatrix))
        assert_(isinstance(hypot(mx, mx), MMatrix))
        assert_(isinstance(hypot(mx, x), MMatrix))

    def test_masked_binary_operations2(self):
        # Tests domained_masked_binary_operation
        (x, mx) = self.data
        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
        assert_(isinstance(divide(mx, mx), MMatrix))
        assert_(isinstance(divide(mx, x), MMatrix))
        assert_equal(divide(mx, mx), divide(xmx, xmx))

class TestConcatenator:
    # Tests for mr_, the equivalent of r_ for masked arrays.

    def test_matrix_builder(self):
        assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])

    def test_matrix(self):
        # Test consistency with unmasked version.  If we ever deprecate
        # matrix, this test should either still pass, or both actual and
        # expected should fail to be build.
        actual = mr_['r', 1, 2, 3]
        expected = np.ma.array(np.r_['r', 1, 2, 3])
        assert_array_equal(actual, expected)

        # outer type is masked array, inner type is matrix
        assert_equal(type(actual), type(expected))
        assert_equal(type(actual.data), type(expected.data))

Youez - 2016 - github.com/yon3zu
LinuXploit