....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.159
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/hc_python/lib64/python3.12/site-packages/pydantic/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/hc_python/lib64/python3.12/site-packages/pydantic/functional_validators.py
"""This module contains related classes and functions for validation."""

from __future__ import annotations as _annotations

import dataclasses
import sys
from functools import partialmethod
from types import FunctionType
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, cast, overload

from pydantic_core import core_schema
from pydantic_core import core_schema as _core_schema
from typing_extensions import Annotated, Literal, TypeAlias

from . import GetCoreSchemaHandler as _GetCoreSchemaHandler
from ._internal import _core_metadata, _decorators, _generics, _internal_dataclass
from .annotated_handlers import GetCoreSchemaHandler
from .errors import PydanticUserError

if sys.version_info < (3, 11):
    from typing_extensions import Protocol
else:
    from typing import Protocol

_inspect_validator = _decorators.inspect_validator


@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
class AfterValidator:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#annotated-validators

    A metadata class that indicates that a validation should be applied **after** the inner validation logic.

    Attributes:
        func: The validator function.

    Example:
        ```py
        from typing_extensions import Annotated

        from pydantic import AfterValidator, BaseModel, ValidationError

        MyInt = Annotated[int, AfterValidator(lambda v: v + 1)]

        class Model(BaseModel):
            a: MyInt

        print(Model(a=1).a)
        #> 2

        try:
            Model(a='a')
        except ValidationError as e:
            print(e.json(indent=2))
            '''
            [
              {
                "type": "int_parsing",
                "loc": [
                  "a"
                ],
                "msg": "Input should be a valid integer, unable to parse string as an integer",
                "input": "a",
                "url": "https://errors.pydantic.dev/2/v/int_parsing"
              }
            ]
            '''
        ```
    """

    func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction

    def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
        schema = handler(source_type)
        info_arg = _inspect_validator(self.func, 'after')
        if info_arg:
            func = cast(core_schema.WithInfoValidatorFunction, self.func)
            return core_schema.with_info_after_validator_function(func, schema=schema, field_name=handler.field_name)
        else:
            func = cast(core_schema.NoInfoValidatorFunction, self.func)
            return core_schema.no_info_after_validator_function(func, schema=schema)


@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
class BeforeValidator:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#annotated-validators

    A metadata class that indicates that a validation should be applied **before** the inner validation logic.

    Attributes:
        func: The validator function.

    Example:
        ```py
        from typing_extensions import Annotated

        from pydantic import BaseModel, BeforeValidator

        MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)]

        class Model(BaseModel):
            a: MyInt

        print(Model(a=1).a)
        #> 2

        try:
            Model(a='a')
        except TypeError as e:
            print(e)
            #> can only concatenate str (not "int") to str
        ```
    """

    func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction

    def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
        schema = handler(source_type)
        info_arg = _inspect_validator(self.func, 'before')
        if info_arg:
            func = cast(core_schema.WithInfoValidatorFunction, self.func)
            return core_schema.with_info_before_validator_function(func, schema=schema, field_name=handler.field_name)
        else:
            func = cast(core_schema.NoInfoValidatorFunction, self.func)
            return core_schema.no_info_before_validator_function(func, schema=schema)


@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
class PlainValidator:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#annotated-validators

    A metadata class that indicates that a validation should be applied **instead** of the inner validation logic.

    Attributes:
        func: The validator function.

    Example:
        ```py
        from typing_extensions import Annotated

        from pydantic import BaseModel, PlainValidator

        MyInt = Annotated[int, PlainValidator(lambda v: int(v) + 1)]

        class Model(BaseModel):
            a: MyInt

        print(Model(a='1').a)
        #> 2
        ```
    """

    func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction

    def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
        # Note that for some valid uses of PlainValidator, it is not possible to generate a core schema for the
        # source_type, so calling `handler(source_type)` will error, which prevents us from generating a proper
        # serialization schema. To work around this for use cases that will not involve serialization, we simply
        # catch any PydanticSchemaGenerationError that may be raised while attempting to build the serialization schema
        # and abort any attempts to handle special serialization.
        from pydantic import PydanticSchemaGenerationError

        try:
            schema = handler(source_type)
            serialization = core_schema.wrap_serializer_function_ser_schema(function=lambda v, h: h(v), schema=schema)
        except PydanticSchemaGenerationError:
            serialization = None

        info_arg = _inspect_validator(self.func, 'plain')
        if info_arg:
            func = cast(core_schema.WithInfoValidatorFunction, self.func)
            return core_schema.with_info_plain_validator_function(
                func, field_name=handler.field_name, serialization=serialization
            )
        else:
            func = cast(core_schema.NoInfoValidatorFunction, self.func)
            return core_schema.no_info_plain_validator_function(func, serialization=serialization)


@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
class WrapValidator:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#annotated-validators

    A metadata class that indicates that a validation should be applied **around** the inner validation logic.

    Attributes:
        func: The validator function.

    ```py
    from datetime import datetime

    from typing_extensions import Annotated

    from pydantic import BaseModel, ValidationError, WrapValidator

    def validate_timestamp(v, handler):
        if v == 'now':
            # we don't want to bother with further validation, just return the new value
            return datetime.now()
        try:
            return handler(v)
        except ValidationError:
            # validation failed, in this case we want to return a default value
            return datetime(2000, 1, 1)

    MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)]

    class Model(BaseModel):
        a: MyTimestamp

    print(Model(a='now').a)
    #> 2032-01-02 03:04:05.000006
    print(Model(a='invalid').a)
    #> 2000-01-01 00:00:00
    ```
    """

    func: core_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunction

    def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
        schema = handler(source_type)
        info_arg = _inspect_validator(self.func, 'wrap')
        if info_arg:
            func = cast(core_schema.WithInfoWrapValidatorFunction, self.func)
            return core_schema.with_info_wrap_validator_function(func, schema=schema, field_name=handler.field_name)
        else:
            func = cast(core_schema.NoInfoWrapValidatorFunction, self.func)
            return core_schema.no_info_wrap_validator_function(func, schema=schema)


if TYPE_CHECKING:

    class _OnlyValueValidatorClsMethod(Protocol):
        def __call__(self, cls: Any, value: Any, /) -> Any: ...

    class _V2ValidatorClsMethod(Protocol):
        def __call__(self, cls: Any, value: Any, info: _core_schema.ValidationInfo, /) -> Any: ...

    class _V2WrapValidatorClsMethod(Protocol):
        def __call__(
            self,
            cls: Any,
            value: Any,
            handler: _core_schema.ValidatorFunctionWrapHandler,
            info: _core_schema.ValidationInfo,
            /,
        ) -> Any: ...

    _V2Validator = Union[
        _V2ValidatorClsMethod,
        _core_schema.WithInfoValidatorFunction,
        _OnlyValueValidatorClsMethod,
        _core_schema.NoInfoValidatorFunction,
    ]

    _V2WrapValidator = Union[
        _V2WrapValidatorClsMethod,
        _core_schema.WithInfoWrapValidatorFunction,
    ]

    _PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]

    _V2BeforeAfterOrPlainValidatorType = TypeVar(
        '_V2BeforeAfterOrPlainValidatorType',
        _V2Validator,
        _PartialClsOrStaticMethod,
    )
    _V2WrapValidatorType = TypeVar('_V2WrapValidatorType', _V2WrapValidator, _PartialClsOrStaticMethod)


@overload
def field_validator(
    field: str,
    /,
    *fields: str,
    mode: Literal['before', 'after', 'plain'] = ...,
    check_fields: bool | None = ...,
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...


@overload
def field_validator(
    field: str,
    /,
    *fields: str,
    mode: Literal['wrap'],
    check_fields: bool | None = ...,
) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]: ...


FieldValidatorModes: TypeAlias = Literal['before', 'after', 'wrap', 'plain']


def field_validator(
    field: str,
    /,
    *fields: str,
    mode: FieldValidatorModes = 'after',
    check_fields: bool | None = None,
) -> Callable[[Any], Any]:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#field-validators

    Decorate methods on the class indicating that they should be used to validate fields.

    Example usage:
    ```py
    from typing import Any

    from pydantic import (
        BaseModel,
        ValidationError,
        field_validator,
    )

    class Model(BaseModel):
        a: str

        @field_validator('a')
        @classmethod
        def ensure_foobar(cls, v: Any):
            if 'foobar' not in v:
                raise ValueError('"foobar" not found in a')
            return v

    print(repr(Model(a='this is foobar good')))
    #> Model(a='this is foobar good')

    try:
        Model(a='snap')
    except ValidationError as exc_info:
        print(exc_info)
        '''
        1 validation error for Model
        a
          Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
        '''
    ```

    For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).

    Args:
        field: The first field the `field_validator` should be called on; this is separate
            from `fields` to ensure an error is raised if you don't pass at least one.
        *fields: Additional field(s) the `field_validator` should be called on.
        mode: Specifies whether to validate the fields before or after validation.
        check_fields: Whether to check that the fields actually exist on the model.

    Returns:
        A decorator that can be used to decorate a function to be used as a field_validator.

    Raises:
        PydanticUserError:
            - If `@field_validator` is used bare (with no fields).
            - If the args passed to `@field_validator` as fields are not strings.
            - If `@field_validator` applied to instance methods.
    """
    if isinstance(field, FunctionType):
        raise PydanticUserError(
            '`@field_validator` should be used with fields and keyword arguments, not bare. '
            "E.g. usage should be `@validator('<field_name>', ...)`",
            code='validator-no-fields',
        )
    fields = field, *fields
    if not all(isinstance(field, str) for field in fields):
        raise PydanticUserError(
            '`@field_validator` fields should be passed as separate string args. '
            "E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
            code='validator-invalid-fields',
        )

    def dec(
        f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
    ) -> _decorators.PydanticDescriptorProxy[Any]:
        if _decorators.is_instance_method_from_sig(f):
            raise PydanticUserError(
                '`@field_validator` cannot be applied to instance methods', code='validator-instance-method'
            )

        # auto apply the @classmethod decorator
        f = _decorators.ensure_classmethod_based_on_signature(f)

        dec_info = _decorators.FieldValidatorDecoratorInfo(fields=fields, mode=mode, check_fields=check_fields)
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    return dec


_ModelType = TypeVar('_ModelType')
_ModelTypeCo = TypeVar('_ModelTypeCo', covariant=True)


class ModelWrapValidatorHandler(_core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]):
    """@model_validator decorated function handler argument type. This is used when `mode='wrap'`."""

    def __call__(  # noqa: D102
        self,
        value: Any,
        outer_location: str | int | None = None,
        /,
    ) -> _ModelTypeCo:  # pragma: no cover
        ...


class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]):
    """A @model_validator decorated function signature.
    This is used when `mode='wrap'` and the function does not have info argument.
    """

    def __call__(  # noqa: D102
        self,
        cls: type[_ModelType],
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        handler: ModelWrapValidatorHandler[_ModelType],
        /,
    ) -> _ModelType: ...


class ModelWrapValidator(Protocol[_ModelType]):
    """A @model_validator decorated function signature. This is used when `mode='wrap'`."""

    def __call__(  # noqa: D102
        self,
        cls: type[_ModelType],
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        handler: ModelWrapValidatorHandler[_ModelType],
        info: _core_schema.ValidationInfo,
        /,
    ) -> _ModelType: ...


class FreeModelBeforeValidatorWithoutInfo(Protocol):
    """A @model_validator decorated function signature.
    This is used when `mode='before'` and the function does not have info argument.
    """

    def __call__(  # noqa: D102
        self,
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        /,
    ) -> Any: ...


class ModelBeforeValidatorWithoutInfo(Protocol):
    """A @model_validator decorated function signature.
    This is used when `mode='before'` and the function does not have info argument.
    """

    def __call__(  # noqa: D102
        self,
        cls: Any,
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        /,
    ) -> Any: ...


class FreeModelBeforeValidator(Protocol):
    """A `@model_validator` decorated function signature. This is used when `mode='before'`."""

    def __call__(  # noqa: D102
        self,
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        info: _core_schema.ValidationInfo,
        /,
    ) -> Any: ...


class ModelBeforeValidator(Protocol):
    """A `@model_validator` decorated function signature. This is used when `mode='before'`."""

    def __call__(  # noqa: D102
        self,
        cls: Any,
        # this can be a dict, a model instance
        # or anything else that gets passed to validate_python
        # thus validators _must_ handle all cases
        value: Any,
        info: _core_schema.ValidationInfo,
        /,
    ) -> Any: ...


ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType]
"""A `@model_validator` decorated function signature. This is used when `mode='after'` and the function does not
have info argument.
"""

ModelAfterValidator = Callable[[_ModelType, _core_schema.ValidationInfo], _ModelType]
"""A `@model_validator` decorated function signature. This is used when `mode='after'`."""

_AnyModelWrapValidator = Union[ModelWrapValidator[_ModelType], ModelWrapValidatorWithoutInfo[_ModelType]]
_AnyModeBeforeValidator = Union[
    FreeModelBeforeValidator, ModelBeforeValidator, FreeModelBeforeValidatorWithoutInfo, ModelBeforeValidatorWithoutInfo
]
_AnyModelAfterValidator = Union[ModelAfterValidator[_ModelType], ModelAfterValidatorWithoutInfo[_ModelType]]


@overload
def model_validator(
    *,
    mode: Literal['wrap'],
) -> Callable[
    [_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
]: ...


@overload
def model_validator(
    *,
    mode: Literal['before'],
) -> Callable[
    [_AnyModeBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
]: ...


@overload
def model_validator(
    *,
    mode: Literal['after'],
) -> Callable[
    [_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
]: ...


def model_validator(
    *,
    mode: Literal['wrap', 'before', 'after'],
) -> Any:
    """Usage docs: https://docs.pydantic.dev/2.8/concepts/validators/#model-validators

    Decorate model methods for validation purposes.

    Example usage:
    ```py
    from typing_extensions import Self

    from pydantic import BaseModel, ValidationError, model_validator

    class Square(BaseModel):
        width: float
        height: float

        @model_validator(mode='after')
        def verify_square(self) -> Self:
            if self.width != self.height:
                raise ValueError('width and height do not match')
            return self

    s = Square(width=1, height=1)
    print(repr(s))
    #> Square(width=1.0, height=1.0)

    try:
        Square(width=1, height=2)
    except ValidationError as e:
        print(e)
        '''
        1 validation error for Square
          Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
        '''
    ```

    For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators).

    Args:
        mode: A required string literal that specifies the validation mode.
            It can be one of the following: 'wrap', 'before', or 'after'.

    Returns:
        A decorator that can be used to decorate a function to be used as a model validator.
    """

    def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
        # auto apply the @classmethod decorator
        f = _decorators.ensure_classmethod_based_on_signature(f)
        dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode)
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    return dec


AnyType = TypeVar('AnyType')


if TYPE_CHECKING:
    # If we add configurable attributes to IsInstance, we'd probably need to stop hiding it from type checkers like this
    InstanceOf = Annotated[AnyType, ...]  # `IsInstance[Sequence]` will be recognized by type checkers as `Sequence`

else:

    @dataclasses.dataclass(**_internal_dataclass.slots_true)
    class InstanceOf:
        '''Generic type for annotating a type that is an instance of a given class.

        Example:
            ```py
            from pydantic import BaseModel, InstanceOf

            class Foo:
                ...

            class Bar(BaseModel):
                foo: InstanceOf[Foo]

            Bar(foo=Foo())
            try:
                Bar(foo=42)
            except ValidationError as e:
                print(e)
                """
                [
                │   {
                │   │   'type': 'is_instance_of',
                │   │   'loc': ('foo',),
                │   │   'msg': 'Input should be an instance of Foo',
                │   │   'input': 42,
                │   │   'ctx': {'class': 'Foo'},
                │   │   'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of'
                │   }
                ]
                """
            ```
        '''

        @classmethod
        def __class_getitem__(cls, item: AnyType) -> AnyType:
            return Annotated[item, cls()]

        @classmethod
        def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
            from pydantic import PydanticSchemaGenerationError

            # use the generic _origin_ as the second argument to isinstance when appropriate
            instance_of_schema = core_schema.is_instance_schema(_generics.get_origin(source) or source)

            try:
                # Try to generate the "standard" schema, which will be used when loading from JSON
                original_schema = handler(source)
            except PydanticSchemaGenerationError:
                # If that fails, just produce a schema that can validate from python
                return instance_of_schema
            else:
                # Use the "original" approach to serialization
                instance_of_schema['serialization'] = core_schema.wrap_serializer_function_ser_schema(
                    function=lambda v, h: h(v), schema=original_schema
                )
                return core_schema.json_or_python_schema(python_schema=instance_of_schema, json_schema=original_schema)

        __hash__ = object.__hash__


if TYPE_CHECKING:
    SkipValidation = Annotated[AnyType, ...]  # SkipValidation[list[str]] will be treated by type checkers as list[str]
else:

    @dataclasses.dataclass(**_internal_dataclass.slots_true)
    class SkipValidation:
        """If this is applied as an annotation (e.g., via `x: Annotated[int, SkipValidation]`), validation will be
            skipped. You can also use `SkipValidation[int]` as a shorthand for `Annotated[int, SkipValidation]`.

        This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes,
        and know that it is safe to skip validation for one or more of the fields.

        Because this converts the validation schema to `any_schema`, subsequent annotation-applied transformations
        may not have the expected effects. Therefore, when used, this annotation should generally be the final
        annotation applied to a type.
        """

        def __class_getitem__(cls, item: Any) -> Any:
            return Annotated[item, SkipValidation()]

        @classmethod
        def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
            original_schema = handler(source)
            metadata = _core_metadata.build_metadata_dict(js_annotation_functions=[lambda _c, h: h(original_schema)])
            return core_schema.any_schema(
                metadata=metadata,
                serialization=core_schema.wrap_serializer_function_ser_schema(
                    function=lambda v, h: h(v), schema=original_schema
                ),
            )

        __hash__ = object.__hash__

Youez - 2016 - github.com/yon3zu
LinuXploit